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Abstract: Natural gas plays a key role among the national and worldwide sources of energy. 

Wellhead natural gas may contain a number of different contaminants, which requires removal prior 

to sending the gas to the pipeline and the final consumer. N2 is an inert contaminant and its presence 

may cause inefficiency and energy waste in the pipeline and compression units downstream of the 

Gas Processing Unit (GPU). Nitrogen rejection units (NRU) can employ three different technologies: 

cryogenic distillation, pressure swing adsorption (PSA) and membranes. Cryogenic distillation is the 

most mature technology. However, since it operates above atmospheric pressure (14 to 27 barg) 

and at low temperature (-180 to -150 °C) this process is intensive in energy and capital. In this work, 

we analyze the technical viability of a PSA bed packed with silicalite to treat the waste nitrogen 

stream arising from a cryogenic distillation plant in order to reduce the cryogenic unit’s size and 

increase its temperature. The governing equations of packed bed adsorption forms a system of 

differential algebraic equations (DAE), and can be solved using the method of lines. The method of 

lines uses two numerical methods, one for the time domain and another for the spatial domain. This 

work compares four different finite volume method (FVM) schemes to solve the DAE in space (UDS, 

VanLeer, Superbee and WENO) while using the DASSL method to solve the DAE in the time domain. 

WENO is the most adequate method in terms of numerical stability, numerical dispersion and 

computational cost. This method also demonstrates a good agreement with experimental points. 

Optimizing purity and recovery of the PSA separation using the DAE model can take uo to 16 hours 

on a desktop PC. We therefore use artificial neural networks as surrogate models to reduce the 

optimization time to less than a second. Using this approach, we found that the proposed PSA cycle 

and material can deliver a product with 99.5% N2 purity from a waste nitrogen stream containing 

15% CH4 and also presents a maximum nitrogen recovery of 90%. 

Keywords: Adsorption, PSA, Neural Networks, Optimization. 
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Resumo: O gás natural desempenha um papel fundamental dentre as fontes de energia nacionais e 

mundiais. O gás natural na cabeça de poço pode conter vários contaminantes diferentes, as quais 

requerem remoção antes do envio do gás para o gasoduto e para o consumidor final. N2 é um 

contaminante inerte e sua presença pode causar ineficiência e desperdício de energia nos dutos e 

unidades de compressão a jusante da Unidade de Processamento de Gás Natural (UPGN). As 

unidades de remoção de nitrogênio (NRU) podem empregar três tecnologias diferentes: destilação 

criogênica, adsorção por variação de pressão (PSA) e membranas. A destilação criogênica é a 

tecnologia mais madura. No entanto, uma vez que opera em pressões acima da atmosférica (14 a 

27 barg) e em baixas temperaturas (-180 a -150 ° C), este processo é intensivo em energia e capital. 

Neste trabalho, analisamos a viabilidade técnica de um leito de PSA empacotado com silicalita para 

tratar a corrente de nitrogênio residual decorrente de uma planta de destilação criogênica, a fim de 

reduzir o tamanho da unidade criogênica e aumentar sua temperatura. As equações governantes 

da adsorção em leito empacotado formam um sistema de equações algébrico diferenciais (DAE) e 

podem ser resolvidas usando o método de linhas. O método das linhas usa dois métodos numéricos, 

um para o domínio do tempo e outro para o domínio espacial. Este trabalho compara quatro 

esquemas diferentes do método dos volumes finitos (FVM) para resolver o DAE no espaço (UDS, 

VanLeer, Superbee e WENO) enquanto utiliza o método DASSL para resolver o DAE no domínio do 

tempo. WENO é o método mais adequado em termos de estabilidade numérica, dispersão numérica 

e custo computacional. Este método também demonstra uma boa concordância com os pontos 

experimentais. Otimizar a pureza e a recuperação da separação de PSA usando o modelo DAE pode 

levar até 16 horas em um PC desktop. Usamos, portanto, redes neurais artificiais como modelos 

substitutos para reduzir o tempo de otimização para menos de um segundo. Usando essa 

abordagem, descobrimos que o ciclo de PSA e o material proposto podem fornecer um produto com 

99,5% de pureza de N2 a partir de uma corrente de nitrogênio residual contendo 15% de CH4 e 

também apresenta uma recuperação máxima de nitrogênio de 90%. 

Palavras chave: Adsorção, PSA, Redes Neurais, Otimização. 
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Chapter I - Introduction 

Natural gas is the third most used energy source worldwide. Behind oil and coal, its consumption 

amounted to 701.1 billion m3 in 2015 (631.0 million tons oil equivalent) representing 23.8% of the 

total energy consumed worldwide (BP statistical review of world energy, 2016). The heating value 

of natural gas usually varies from 26.1 MJ/Sm3 to 59.6 MJ/Sm3, where S stands for standard (0 °C 

and 105 Pa) (Guo and Ghalambor, 2012). Typical natural gas reserves contains mostly small 

hydrocarbons and small amounts of inorganic gas (Häring, 2008). Table I.1 shows usual natural gas 

components, as well as their typical and extreme concentrations. It is possible to see that although 

predominantly composed of methane, some natural gases may be extremely rich in nitrogen and 

CO2. 

Table I.1 – Typical and extreme concentration of natural gas components in % mole 
fraction (Häring, 2008). 

Components Typical  Extreme 

Methane 80-95 50-95 

Ethane 2-5 2-20 

Propane 1-3 1-12 

Butane 0-1 0-4 

C5+ 0-1 0-1 

Carbon dioxide 1-5 0-99 

Nitrogen 1-5 0-70 

Hydrogen sulfide 0-2 0-6 

Oxygen 0 0-0.2 

Helium 0-0.1 0-1 

Other inert gases  traces   

 

In this work, we deal with nitrogen-contaminated natural gases. Pipeline content of nitrogen has to 

meet national and international specifications for transport and commercialization. Most regulatory 

organs caps the inert content of fuel gases at 4% (Scholes et al., 2012). On Brazilian soil, the limit is 

6% for all regions except for the northeast and north regions where the limits are respectively 8% 

and 18% (ANP, 2008). Such high limits are due to the Urucu field on Amazonas, and Manati field on 

Bahia (Madeira, 2008). Regarding worldwide occurrence, natural gas wells containing above 

specification nitrogen may be found in (but not limited to) Algeria, Estonia, Germany, Netherlands, 

Russia, Sweden, UK and USA with usual compositions ranging between 4% - 14%, although fields 

containing between 85%-100% exist (Jackson et al., 2005; Krooss et al., 1995; Madeira, 2008). There 
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are various paths to the formation of N2 in the subsurface of sedimentary basins. It can derive 

immediately from the deep crust and mantle (primordial) or through reincorporation from the 

atmosphere into the lithosphere (recycled) (Krooss et al., 1995).  

Nitrogen separation from natural gas is possible through the usage of Nitrogen Rejection Units 

(NRU). The natural gas industry employs NRU for two main purposes: gas upgrading and enhanced 

oil recovery (EOR). While the first aims to specify the natural gas to pipeline quality, the second aims 

to increase oil recovery on production wells through N2 reinjection on stimulation wells (Kidnay and 

Parrish, 2006). The main difference of both applications is that EOR should be planned to handle 

with an increase in nitrogen concentration throughout the time (MacKenzie et al., 2002). There are 

various types of NRU such as cryogenic distillation, pressure swing adsorption (PSA), membrane 

permeation, solvent absorption, lean oil absorption and chelating chemicals (Kuo et al., 2012). These 

technologies may differentiate in terms of stages of research and commercialization. The main 

processes considered in the literature are cryogenic distillation, PSA and membranes where the first 

is the most mature (Kidnay and Parrish, 2006). The literature cites a cryogenic plant startup dating 

back to 1969, in the Parisian region of Alfortville, to treat natural gas coming from the Netherlands 

with 14% N2 bringing it down to 2.5% (in the present work “%” stands for mole percentage, except 

when otherwise is specified). The major disadvantages of such technology are its energy and capital 

demands, which makes it only feasible to facilities processing high amounts of natural gas (> 400 

MSm3/d) for an extended amount of time (10-20 years) (Kidnay and Parrish, 2006; Lokhandwala et 

al., 2010). For small and medium sized wells, the only feasible technologies are membrane 

permeation and PSA. Table I.2 further compares these units. 

Table I.2 – Comparison of cryogenic distillation, PSA and membrane NRU (Kidnay and 
Parrish, 2006) 

Process 
Feed (103 

Nm3/d) 
Complexity 

Hydrocarbon 
recovery 

Stage 

Cryogenic 
Distillation 

>400 Complex, Continuous Product Mature 

PSA 60-400 
Simple, Semi-continuous, Multiple 

Beds 
Reject 

Early 
commercialization 

Membrane 15-700 Simple, Continuous, Multiple Beds Product 
Early 

commercialization 
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The literature cites the study of many adsorbents to perform methane-nitrogen separation, such as 

activated carbon made of various substrates, zeolites with various crystalline configurations, carbon 

molecular sieves and metal-organic frameworks. However, almost all adsorbents’ selectivity favor 

the adsorption of methane. Since methane is the predominant component in the natural gas, the 

ideal adsorbent should favor the adsorption of nitrogen over methane and present high adsorption 

capacity in order to yield a high purity product for large flows. To demonstrate the state of the art 

in PSA process technology, carbon molecular sieves with commercial applications for flow rates 

ranging from 65×103 to 425×103 Sm3/d. On the other hand, one of the few known adsorbents with 

equilibrium selectivity favoring N2 adsorption, CTS-1 (Molecular Gate™) is only capable of processing 

natural gas at flow rates up to 141×103 Sm3/d. Although there are adsorbents with kinetic selectivity 

favoring the adsorption of N2, no commercial applications using such materials are known so far 

(Tagliabue et al., 2009). A similar problem occurs with membrane separation. Membranes can be 

manufactured to permeate selectively N2 (𝛼𝑁2,𝐶𝐻4
≈ 2.5) or CH4 (𝛼𝐶𝐻4,𝑁2

≈ 4). However, an ideal 

membrane to perform commercially suitable single stage gas separation should present a nitrogen 

selectivity of 6 or a methane selectivity of 17 (Baker and Lokhandwala, 2008). Therefore, commercial 

nitrogen separation plants are composed of bed arrangements ranging from two to four beds 

(NitroSep™), depending on the feed composition. Although the company states that this technology 

can be scaled up to 2800×103 Sm3/d (MTRI, 2017), the literature reports commercial applications 

with inlet flow rates only up to 340×103 Sm3/d (Lokhandwala et al., 2010). 

Chapter I.1- Motivation 

One of the main difficulties in separating the binary mixture of nitrogen and methane is the similarity 

in their molecular properties such as kinetic diameter, dipole moment and polarizability (Tagliabue 

et al., 2009). Cryogenic distillation is an efficient separation technique due to the difference in the 

molecules boiling points 75.36 K (-197.8 °C) and 111.5 K (-161.6 °C) respectively. However, another 

work in the literature points out that one of the main challenges of cryogenic distillation processes 

is the difficulty in obtaining a reject with low methane concentration, keeping them below 3% 

(MacKenzie et al., 2002). Minimizing this concentration incurs in the need to operate the process in 

extremely low temperatures with a great compression energy input (MacKenzie et al., 2002). 

However, because most adsorbents selectively retain methane over nitrogen on their surfaces, it is 

favorable to purify the aforementioned rejected stream using PSA. Such approach can lead to the 

relaxation on the working conditions of the cryogenic unit, allowing it to produce a reject stream 
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with higher methane concentration, consequently increasing the operating temperature and 

reducing the energy consumption. 

Chapter I.2 - General Objectives 

This work focus on analyzing numerically the separation of the binary mixture N2/CH4, using a fixed 

bed packed with the adsorbent silicalite. A similar unit has been analyzed in the literature for the 

separation of methane rich streams (Delgado et al., 2006, 2011). In this work, we investigate the 

PSA performance for nitrogen rich streams. The results are separated into two main chapters. 

Chapter II contains the process modelling and analysis correspond to an article published in the 

Chemical Engineering Process: Process Intensification Journal (Sant Anna et al., 2016). It covers the 

phenomenological modelling equations; numerical methods to solve the system in space and time 

(method of lines); comparison against experimental data for breakthrough curves; four step PSA 

sequence and its boundary conditions and response surface optimization of the operating pressures 

for an inlet gas containing 15% methane. Chapter III contains materials about Machine learning 

model and optimization of a PSA unit for methane-nitrogen separation, published in the Computers 

and Chemical Engineering (Sant Anna et al., 2017). It regards the usage of artificial neural networks 

(ANN) as surrogate models to optimize the PSA process. It covers the pattern generation using the 

Latin Hypercube Sampling technique (LHS); training of ANN surrogate models; validation of the ANN 

model against the phenomenological model; comparison against a linear model; single objective 

optimization of both the ANN and phenomenological models and multi-objective optimization of 

the ANN surrogate model. Chapter IV presents the general conclusions and suggestions for future 

work on N2/CH4 separation process. In the end of Chapters II and III, the reader can find an 

addendum expanding information not published for the sake of expanding the explanation in the 

published articles. 
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Chapter II - Methane/nitrogen separation through 

pressure swing adsorption process from nitrogen-rich 

streams 

This work presents a novel approach for the treatment of nitrogen contaminated natural gas 

streams. Literature states that for small and medium scale production wells (< 400 MNm3/day), such 

stream can be treated by PSA. For larger scale natural gas production, the only mature option 

available is cryogenic distillation. Computer simulations were performed to evaluate the usage of 

silicalite in a PSA process for the separation of a nitrogen rich N2/CH4 mixture. This unit is designed 

for coupling to a cryogenic distillation process. The differential algebraic equations system, 

composed of mass and energy balances as well as other constitutive equations, was solved in the 

spatial dimension using the finite volumes method. Numerical methods employed were analyzed 

for numerical dispersion and oscillation. In order to test the numerical approach, parameters and 

model, data from the literature was correlated. A Rotated Central Composite Design (RCCD) was 

performed in order to determine optimum operational pressures. In the chosen set of operational 

values, the process presented nitrogen purity greater than 96% and a recovery beyond 50%. The 

nitrogen rich outlet stream purity is specified for venting, while the methane rich stream is proper 

for recycling to the cryogenic process. 

This chapter is based on the published article:  

Sant Anna, H.R., Barreto, A.G., Tavares, F.W., do Nascimento, J.F., 2016. Methane/nitrogen 
separation through pressure swing adsorption process from nitrogen-rich streams. Chem. 
Eng. Process. Process Intensif. 103, 70–79. doi:10.1016/j.cep.2015.11.002 
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Chapter II.1 - Introduction 

Rejected as a byproduct of oil production until mid-twentieth century, natural gas now accounts for 

23% of world energy consumption (Kuo et al., 2012). However, natural gas extracted from the well 

heads requires the removal of various contaminants such as CO2, H2O and N2 (Kidnay & Parrish 

2006). Because CH4 and N2 have similar physical and chemical properties, nitrogen separation from 

natural gas remains as a big challenge the industry faces nowadays, due to the fact that many small 

and medium production wells shut down for the lack of a suitable economic feasible process (Baker 

& Lokhandwala 2008). Being an inert gas, excess nitrogen can cause a drastic reduction of the 

calorific value of natural gas, in addition to increasing compression and transportation costs. About 

16% of North American reserves have nitrogen as a contaminant, many of which are commercially 

infeasible (Kuo et al., 2012, Lokhandwala et al., 2010). The most mature technology for N2 removal 

from natural gas is cryogenic distillation, being the only commercially feasible option for gas 

production in large scales (> 700 MNm3/day) (Kidnay & Parrish 2006). Using Joule-Thomson 

expansion, this type of nitrogen removal unit (NRU) performs vapor-liquid equilibrium separation at 

temperatures as low as 90 K. However, depending on the chosen cryogenic process, as well as the 

presence of contaminants, the tail gas arising from this process may contain significant amounts of 

methane. It is known that, greater the desired methane recovery in such processes, the greater is 

the required energy to compress the gaseous mixtures (Mackenzie, 2002). Furthermore, it is also 

known that the normal boiling points of CH4 and N2 are respectively 111.55 K and 75.36 K. Therefore, 

it is easy to notice that being the most volatile component, nitrogen condensation in distillation 

columns requires a larger amount of energy, in order to produce a nitrogen rich tail gas, when 

compared to the production of methane rich products. The above mentioned translates in a way 

that compression power needed to operate a cryogenic distillation NRU has a high potential of 

reduction by relaxing the purity of the tail gas, with its post treatment with another technology such 

as PSA. From this point view, a PSA should be designed only to improve the nitrogen purity in tail 

gas stream provided by cryogenic distillation unit. For this purpose, the adsorption unit favors the 

usage of methane selective solids. The vast majority of the known adsorbents, such as the family of 

activated carbons, carbon molecular sieves and zeolites exhibit selectivity favoring the retention of 

methane rather than nitrogen.  
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Figure II.1 – NRU composed by coupling of cryogenic distillation and PSA units used as 
a motivator case – compositions in molar base. 

Therefore, an alternative NRU (Figure II.1) operating with the coupling of cryogenic distillation and 

PSA unit could lead to the reduction of the energy requirements, in order to deliver two streams 

with proper specification from the NRU, i.e., a product stream that contain methane specified to be 

transported (> 98% of methane) and a nitrogen rich stream to be released (> 96% of N2). Figure II.1 

shows the kind of coupling between cryogenic distillation and PSA units used in this work as a 

motivator case. This alternative NRU does not exist in reality, however results available in open 

literature (Mackenzie, 2002) and results obtained using numerical simulation by our group (data not 

published) have indicated that a cryogenic distillation unit can succeed to separate large amount of 

feed gas (greater than 5 MMNm³/day) with CH4 and N2 (80:20% in molar base), if at least 98% of CH4 

at product stream and maximum 85% of N2 at tail gas stream are required. Furthermore, the 

flowrate of the tail gas stream should be about ten times smaller than the flowrate of the feed gas. 

The main advantage of this operating condition is that the purification of nitrogen streams using 

cryogenic distillation is the portion which demands the lowest temperatures, then using adsorbent 

beds for this task has the potential to increase temperatures in which a cryogenic distillation unit 

can operate. Therefore, milder temperature conditions and more tolerant to CO2 process, even at 

trace level, with smaller and less energy intensive units can be achieved by this approach. 

There are many possibilities to carry out the coupling of these separation units, involving sizing of 

each unit, operating condition design and synthesis of the recycling approach. Clearly, the tasks 

above mentioned are not solved independently and are reached from the formulation and solution 

of a large MILP (Mixed Integer Linear Programing) constrained problem. However, in this paper we 

evaluate preliminarily the performance of the PSA unit alone. In this circumstance, a PSA unit should 

be operated to specify the tail gas stream to be released with at least 96 % of N2. The other stream 

from the PSA unit with about 25% of CH4 could be recycled into cryogenic distillation unit. 

 

CH4 ~ 24% 

Stream to be released (>96% of N2) 

Tail gas 

N2 ~ 85% 

Product stream (> 98% of CH4) 

CH4 ~ 80% Cryogenic 

distillation unit 
PSA unit 
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Given the above mentioned, the main focus of this paper is to numerically evaluate the performance 

of a lab-scale PSA unit, in order to increase the N2 purity on the waste stream and generate another 

stream with about 25% of CH4. PSA unit sizing is not a focus of this paper. Adsorption processes for 

methane/nitrogen separation regarded by the literature are mainly focused on removing nitrogen 

from a methane rich stream. Different from usual application we manage the PSA unit to remove 

methane from a nitrogen rich stream. In this sense, silicalite was chosen as a selective adsorbent for 

methane. The PSA operational sequence analogous to a previously sequence available in the 

literature (Jayaraman et al.,, 2004) was chosen to obtain nitrogen rich stream, which is the major 

compound in the feed gas, on adsorption and co-current blowdown steps and CH4 and N2 mixture 
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on countercurrent blowdown step. Concerning the accomplishment of this subject, first a numerical 

analysis of the discretization method was carried out. The well-established adsorption bed 

mathematical model formed by conservation equations coupled to constitutive equations was 

discretized by finite volumes using different numerical schemes. The results were analyzed under 

convergence and computational effort criteria. Secondly, correlation between experimental 

breakthrough data obtained in the literature (Delgado et al., 2006) and predicted curves was carried 

out in order to test the numerical approach, parameters and model. Thirdly, the mathematical 

model tested was rewritten to simulate the dynamic behavior of the different steps inherent to PSA 

unit, using appropriate initial and boundary conditions. Finally, this mathematical framework was 

used to evaluate the sensitivity of the performance variables, e.g., purity and recovery of each 

stream, regarding different pressure levels during pressurization, adsorption and blowdown steps. 

Chapter II.2 - Methodology 

The adsorption dynamics in a packed bed was carried out by numerical solution of mass, energy and 

momentum balances, as well as constitutive equations which describe equilibrium and kinetics of 

adsorption(Haghpanah et al., 2013). Some widespread assumptions in the literature were taken ( 

Ruthven et al., 1994) [1]: 

 Axially dispersed plug-flow 

 Variable fluid velocity 

 Local thermal equilibrium between the solid and the gas inside the pores 

 Ideal gas 

 Linear driving force kinetics (LDF) 

 Negligible radial concentration and temperature gradients 

 Constant solid properties along the axial direction 

In this context, the component balances is: 

−
𝜕

𝜕𝑍
 (𝐶𝐷𝑎𝑥

𝜕𝑦𝑖

𝜕𝑍
  ) +

𝜕(𝜈𝐶𝑦𝑖)

𝜕𝑧
+ 

𝜕𝐶𝑦𝑖

𝜕𝑡
+

(1 − 𝜀)

𝜀

𝜕𝑞
𝑖

𝜕𝑡
= 0     𝑖 = 1, … , 𝑛 (1) 

Where 𝐶 is the total bulk concentration, 𝑍  the axial coordinate, 𝐷𝑎𝑥 the axial dispersion coefficient, 

𝑦𝑖  the mole fraction of the 𝑖𝑡ℎ component, 𝜈 the velocity, 𝑡 the time, 𝜀 the voidage fraction, 𝑞
𝑖
 the 
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mean concentration in the adsorbed phase, and 𝑛 the total number of components in the system. 

Moreover, the total mass balance is [2]: 

𝜕(𝜈𝐶)

𝜕𝑧
+ 

𝜕𝐶

𝜕𝑡
+

1 − 𝜀

𝜀
∑

𝜕𝑞
𝑖

𝜕𝑡

𝑛

𝑖=1

= 0 
(2) 

Where the total molar concentration C  is calculated using the ideal gas law: 

𝐶 =
𝑃

𝑅𝑇
 

(3) 

Where 𝑃 is the pressure, 𝑇 the temperature and 𝑅 the ideal gas constant. The energy balance inside 

the column is described by [3]: 

−
𝐾𝑎𝑥

𝜀

𝜕2𝑇

𝜕𝑍2 +
𝐶𝑝,𝑔

𝑅

𝜕(𝜈𝑃)

𝜕𝑍
−

𝐶𝑝,𝑔

𝑅

𝜕𝑃

𝜕𝑡
 +  [

1 − 𝜀

𝜀
 (𝜌𝑠𝐶𝑝,𝑠 + 𝐶𝑝,𝑎 ∑ 𝑞

𝑖

𝑛

𝑖=1

)]
𝜕𝑇

𝜕𝑡

+
1 − 𝜀

𝜀
 𝐶𝑝,𝑎 𝑇 ∑

𝜕𝑞
𝑖

𝜕𝑡

𝑛

𝑖=1

+ 
1 − 𝜀

𝜀
 ∑ ((−𝛥𝐻𝑖)

𝜕𝑞
𝑖

𝜕𝑡
)

𝑛

𝑖=1

−
2ℎ𝑖𝑛

𝜀𝑟𝑖𝑛
 (𝑇 − 𝑇𝑤) = 0 

(4) 

Where 𝐾𝑎𝑥 is the thermal axial dispersion coefficient, 𝐶𝑝,𝑔the specific heat capacity of the bulk 

phase, 𝐶𝑝,𝑠 the solid specific heat capacity, 𝐶𝑝,𝑎 the adsorbed phase heat capacity, −Δ𝐻𝑖 the 

adsorption enthalpy of the 𝑖𝑡ℎ component, ℎ𝑖𝑛 the inner heat transfer coefficient, 𝑟𝑖𝑛 the column 

internal radius and 𝑇𝑤 the wall temperature. Pressure drop along the axial dimension was modelled 

by: 

−
𝜕𝑃

𝜕𝑍
=

150

4

1

𝑟𝑝
2  (

1 − 𝜀

𝜀
)  𝜇 𝜈 

(5) 

Where 𝑟𝑝 is the pellet radius and 𝜇 the viscosity. 

The solution of the differential algebraic system shown in equations (1) – (5) requires proper initial 

and boundary conditions. Boundary conditions for breakthrough and PSA cycle steps are shown 

below. 
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On a breakthrough, both ends of the bed are opened, with gas flowing in the direction of the 𝑍 axis. 

Boundary conditions on equations (6) – (11) can also be applied on the adsorption step of a PSA 

cycle. For the component mass balance, Danckwerts boundary condition may apply: 

𝐷𝑎𝑥

𝜕𝑦𝑖

𝜕𝑍
|

𝑍=0
 = −𝜈|𝑧=0(𝑦𝑖,𝑓𝑒𝑒𝑑 − 𝑦𝑖|𝑧=0 ) 

(6) 

𝜕𝑦𝑖

𝜕𝑍
|

𝑍=𝐿
= 0 

(7) 

Where 𝑦𝑖,𝑓𝑒𝑒𝑑 is the feed mole fraction of each component and 𝐿 is the bed length. By analogy of 

mass and heat transfer, boundary conditions for the energy balance are: 

𝐾𝑎𝑥

𝜕𝑇

𝜕𝑍
|

𝑍=0
 =  −𝜀𝜈|𝑍=0𝜌𝑔𝐶𝑝,𝑔(𝑇𝑓𝑒𝑒𝑑 − 𝑇|𝑧=0) 

(8) 

𝜕𝑇

𝜕𝑍
|

𝑍=𝐿
= 0 

(9) 

Where 𝜌𝑔 is the density of the bulk phase and 𝑇𝑓𝑒𝑒𝑑 the temperature of the feed gas. Furthermore, 

pressure and velocity boundary conditions are: 

𝑃|𝑍=𝐿 = 𝑃ℎ (10) 

𝜈|𝑧=0 = 𝜈𝑓𝑒𝑒𝑑 (11) 

Where 𝜈𝑓𝑒𝑒𝑑 is the inlet gas feed velocity and 𝑃ℎ can be the operation pressure for both the 

breakthrough curve and the adsorption step on a PSA cycle. Regarding the pressurization step of 

the PSA cycle, the end at 𝑍 = 0 is opened for feed gas admittance, while the other end at 𝑍 = 𝐿 is 

closed. The boundaries conditions for 𝑦𝑖  and 𝑇 are the same as equations (6) – (9). As for 𝜈|𝑧=0, such 

variable is calculated based on the change in pressure on the column inlet, being 𝜈|𝑍=𝐿 = 0. 

Regarding the co-current blowdown step, the end at 𝑍 = 0 is closed while the end at 𝑍 = 𝐿 is 

opened, with gas flowing out through the latter end driven by pressure difference. The boundary 

conditions (7) and (9) are not affected, while (6) and (8) are reduced to: 
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𝜕𝑦𝑖

𝜕𝑍
|

𝑍=0
 = 0 

(12) 

𝜕𝑇

𝜕𝑧
|

𝑍=0
 =  0 

(13) 

Since 𝜈|𝑍=0 = 0, the boundary condition for pressure is: 

𝜕𝑃

𝜕𝑍
|

𝑍=0
= 0 

(14) 

While 𝜈|𝑧=𝐿 is calculated from the change in pressure at the column outlet. For the counter current 

blowdown step, the boundary conditions are analogous to the latter step. 

Table II.1 – Adsorbent, bed and operating conditions for numerical analysis [4]. 

Adsorbent   

 Pellet radius, rp (m) 0.7 x 10-3 

 Particle density, ρp (kg m-3) 1070 
 Cristal size, rc (m) 3 x 10-6 

 Particle porosity, εp 0.59 

PSA and Numerical Analysis bed  

 Bed Length, L (m) 2 

 Bed internal diameter, di (m) 0.2 

 Bed voidage fraction, ε 0.52 

Breakthrough operating conditions  

 Axial dispersion coefficient, Dax (m2 s-1) 2.56 x 10-4 

 Feed volumetric flow, Qf (m3 s-1) 1.0 x 10-2 
 Feed CH4 mole fraction, yCH4,f 0.15 

 Breakthrough pressure, P (bar) 1.01 

 Breakthrough time, t (s) 60 

 Radial heat transfer coefficient, hin (kW m-1 K-1) 2.23 x 10-4 
PSA operating conditions  

 Axial dispersion coefficient, Dax (m2 s-1) 2.0 x 10-5 

 Feed volumetric flow, Qf (m3 s-1) 1.0 x 10-2 

 Feed CH4 mole fraction, yCH4,f 0.15 

 Pressurization time, tp (s) 30 
 Adsorption time, ta (s) 60 

 Co-current blowdown time, tcob (s) 10 

  Counter current blowdown time, tcnb (s) 90 

 

There is a wide variety of methods for solving the above mentioned equations. Recent literature 

suggests that the finite volumes methods offer robustness and stability for a wide range of problems 

(LeVeque 2002). This is especially important for adsorption systems, due to the presence of sharp 

discontinuities alongside the flow, which arise from the propagation of steep mass and energy 

fronts. Within the framework of finite volumes methods, the present work uses the high resolution 
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total variation diminishing (TVD) and weighed essentially non oscillatory (WENO) as described in 

details elsewhere (Haghpanah et al., 2013). The set of equations was converted into a non-

dimensional form. The discretized system was then integrated in time using the DASSL integration 

routine in FORTRAN 90 (Petzold et al., 1982) [5]. The bed was packed with silicalite pellets as 

described in the literature (Delgado et al., 2006). The equilibrium and LDF constants are shown in 

Table II.2. 

Table II.2 – Adsorption parameters for silicalite pellets (Delgado et al., 2011) 

  N2 CH4 

Affinity constant , 𝑏𝑖,0 (10-9Pa-1) 1.57 1.37 

Maximum adsorbed amount, 𝑞𝑖,𝑠 (mol kg-1) 1.72 2.01 

Adsorption enthalpy, -ΔHi (kJ mol-1) 15.5 18.5 

 

Regarding adsorption equilibrium, Langmuir isotherm was used. 

𝑞𝑖 =
𝑞𝑖,𝑠𝑏𝑖𝑃𝑦𝑖

1 + ∑ 𝑏𝑗𝑃𝑦𝑗
𝑗=𝑛𝑐𝑜𝑚𝑝

𝑗=1

 
(15) 

Where 𝑞𝑖 is the mass adsorbed in the particle’s interface, 𝑞𝑖,𝑠 is the saturation concentration and 𝑏𝑖  

the affinity constant of the 𝑖𝑡ℎ component. Considering mass present inside the particles 

macropore, the isotherm becomes [6] 

𝑞𝑖
∗ =

𝑃𝑦𝑖𝜀𝑝

𝑅𝑇
+

𝜌𝑝𝑞𝑖,𝑠𝑏𝑖𝑃𝑦𝑖

1 + ∑ 𝑏𝑗𝑃𝑦𝑗
𝑗=𝑛𝑐𝑜𝑚𝑝

𝑗=1

 
(16) 

Where 𝑞𝑖
∗ is the equilibrium adsorbed concentration in the particle. The affinity constant is 

temperature dependent: 

𝑏𝑖 = 𝑏𝑖,0exp (−
∆𝐻𝑖

𝑅𝑇
) 

(17) 

Where 𝑏𝑖,0 is the reference affinity constant. Thus, LDF kinetics approach is regarded as: 

𝜕𝑞
𝑖

𝜕𝑡
= 𝑘𝑖(𝑞𝑖

∗ − 𝑞
𝑖
) 

(18) 

In this approach, 𝑘𝑖  was estimated using a correlation presented by Farooq & Ruthven, 1990, 

modified for cylindrical geometry, evaluated at feed conditions. Such equations evaluate external, 

macropore and crystalline diffusion respectively.  
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1

𝑘𝑖
=

𝑟𝑝𝑞𝑖,𝑓

3𝑘𝐹𝐶𝑓𝑦𝑖,𝑓
+

𝑟𝑝
2𝜌𝑝𝑞𝑖,𝑓𝜏′

8𝜀𝑝𝐷𝐶𝐻4−𝑁2
𝐶𝑓𝑦𝑖,𝑓

+
𝑟𝑐

2

15𝐷𝑐
 

(19) 

Where 𝑟𝑝 is the particle radius, 𝑘𝑓 is the external mass transfer coefficient, 𝜏′is the tortuosity of the 

macropore network (assumed as 4), 𝑟𝑐  is the crystal radius of zeolites and 𝐷𝑐  is the intracrystaline 

diffusivity (Delgado et al., 2006). The value of constants with the subscript 𝑓 are determined in the 

feed state. The above equation showed that the transport mechanism is dominated by diffusion 

inside the macropores. For the analysis performed in the present work, such parameter settled 

around 𝑘𝐶𝐻4
≅ 5 and  𝑘𝑁2

≅ 16 (Delgado et al., 2006).  

Chapter II.3 - Results and discussion 

Chapter II.3.1 - Numerical method analysis 

The present work compares four spatial discretization methods based on finite volumes schemes 

for N2/CH4 separation in packed beds; Upwind Differentiation Scheme (UDS), Superbee, van Leer 

and Weighed Essentially Non Oscillatory (WENO), (Haghpanah et al., 2013). In order to choose a 

suitable method among the four cited, numerical dispersion analysis was first conducted. The 

column was fed with a binary mixture of nitrogen and methane, being the latter probed at column 

outlet. The test presented was chosen assuming isothermal profile along the column. A separated 

analysis regarding thermal effects is presented further in this article. Table II.1 contains parameters 

used in this analysis. Silicalite parameters were taken elsewhere in the literature (Delgado 2011), 

while bed dimensions were based in another work (Jayaraman 2004). A Peclet number of 200 was 

chosen. In order to establish a comparison basis, a curve generated by simulation with 1000 control 

volumes using WENO method is plotted while other curves were generated using 50 finite volumes. 

The plot in Figure II.2 shows little numerical dispersion on the finite volume methods for the given 

system except UDS. Moreover, numerical oscillations were observed neither in the sloped portion 

nor in the flat region of the breakthrough curve. 
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Figure II.2 – Numerical dispersion on breakthrough profiles analysis using four 
numerical methods: UDS, van Leer, Superbee and WENO using 50 finite volumes. 

WENO 1000 (WENO method with 1000 finite volumes) is used as a comparison basis 
for all four remaining curves [7]. 

 

Because axial dispersion was not a prohibitive aspect in three out of the four methods presented 

above, another important analysis concerns the time for each method to converge. Figure II.3 shows 

computational time for a 50, 100, 150, 200 and 250 finite volumes to simulate the breakthrough 

curve. It is possible to infer that all four methods present approximately a computational complexity 

of quadratic order. The quadratic order may be attributed to the time integrator DASSL. As for the 

discretization schemes, the Superbee method presented the highest computational cost, while UDS 

performed the fastest simulations. Taking into consideration both axial dispersion and convergence 

time, van Leer and WENO were the most suitable methods for the present application, being the 

latter used throughout the rest of the work presented here. 

 

Figure II.3 – Computational time comparison of different finite volumes numerical 
methods [8]. 
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The previous tests shown so far disregarded the heat generation on the bed caused by adsorption. 

Because adsorption of gaseous mixtures is an inherently exothermic phenomenon, adsorbed 

concentration in the surface of a solid tends to decrease as bed temperature increases (Ruthven 

1984). Therefore, by considering a non-isothermal bed, the temperature profiles along can modify 

concentration, pressure and adsorbed amount profiles significantly. Figure II.4 shows a 

breakthrough analysis, comparing an isothermal bed with a constant wall temperature bed. Data 

were generated using the WENO method. It is clear in this simulation that the bed temperature 

decreased significantly the affinity between adsorbent and adsorbates, when compared to the 

isothermal case, and therefore, the breakthrough occurred faster in such case. 

 

Figure II.4 – Comparison between isothermal and constant wall temperature bed 

Chapter II.3.2 - Breakthrough analysis  

Besides the convergence analysis, it is important to obtain parameters for real columns and to verify 

the correctness of the solution. The physical evaluation of the system was carried out comparing 

experimental breakthrough data available in the literature (Delgado et al., 2006), with the predicted 

modelling behavior. The chosen simulation cases are shown in Table II.4, as especial column 

specifications for this specific analysis are present in Table II.3.  

Table II.3 – Column dimensions used in the literature to collect experimental data. 
Axial dispersion coefficient was calculated with correlations given by the author. 

(Extracted from: Delgado et a. 2006) 

Diameter, D (m) 0.016 
Length, L (m) 0.163 
Bed voidage fraction, ε 0.52 
Axial dispersion coefficient, Dax (m2/s) 9.2 x 10-6 
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Table II.4 – Feed gas conditions used in the four cases of fixed bed adsorption 
experiments. (Extracted from: Delgado et al., 2006) 

Case P (bar) 𝑦𝐶𝐻4,𝑓 Q (10-7 m3 s-1) T (K) 

1 0.938 0.08 3.24 298 
2 0.939 0.17 3.23 308 
3 0.951 0.36 3.16 298 
4 0.951 0.7 3.02 298 

 

It is possible to see on Figure II.5 that the predicted behavior well fitted the experimental 

breakthrough data for CH4 and, therefore, it becomes possible to imply that the chosen set of 

equations as well as the numerical methods chosen can provide a proper way to forecast the 

dynamics of a packed adsorption bed. 

 

Figure II.5 – CH4 concentration profiles in the outlet of a fixed bed. Comparison 
between experimental data with predicted modelling behavior in four cases. 

Experimental points extracted in the literature (Delgado et al., 2006) 

Chapter II.3.3 - PSA simulation 

After verifying the system, PSA simulations were carried out in order to evaluate a bed packed with 

silicalite for the binary mixture separation in large scale. After preliminary studies, the chosen 

operational sequence, as shown schematically in Figure II.6, is: 
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 Pressurization: gaseous mixture is fed to the bed, with the outlet valve closed until 

operational pressure is reached 

 Adsorption:  Outlet valve is opened, letting the feed gas flow through the bed, preferentially 

retaining the most adsorbed species (methane) 

 Co-current blowdown: having the inlet valve been closed, the bed is depressurized in the 

direction of the adsorption flow 

 Counter current blowdown: bed is further depressurized in the opposite direction of the 

adsorption flow, preparing it to another sequence 

Such sequence is based on a sequence presented by Jayaraman et al. (2004). The main objective of 

the present process is to decrease nitrogen concentration, since the feed stream arises from an 

impure tail gas of a cryogenic unit for methane concentration. Nevertheless, methane product 

purity in the PSA is only of secondary interest, because this stream will be later recycled to the 

cryogenic process in order to be further concentrated as a methane pure product. Therefore, in the 

designed PSA sequence, nitrogen product purity and recovery are given as priority. 

Pressurization Adsorption
Co-current

Blowdown

Counter current

Blowdown

Nitrogen Product

Methane ProductFeed gas Feed gas

 

Figure II.6 – PSA sequence (Adapted from Jayaraman et al., 2004) 

For the sake of demonstrating the operation of a PSA cycle, the behavior of the pressure, 

temperature as well as nitrogen and methane concentration on the first two steps are plotted in 

Figure II.7. The bed is initially filled with an inert gas at Pl, being such gas expelled from the column 

during the first adsorption step. As it can be seen, there is a considerable difference between the 

second and the first cycle. Such phenomena happens successively characterizing the equilibration 

phase of a PSA cycle. However, when two consecutive steps present approximately the same 

behavior, the Ciclic Steady State (CSS) is reached, and appreciable variation is not observed 

throughout the following steps. During here presented PSA simulations, it took 10 equilibration 

cycles in order to reach CSS. 



 

30 
 

 

Figure II.7 - Profiles of four process variables probed at the outlet of the bed at each 
step: Pressure, CH4 mole fraction, N2 mole fraction and temperature. Figure shows 

the first two complete cycles of a PSA operation. 

Table II.1 shows the operational variables of such process. Case studies were carried out in different 

operational conditions, in order to analyze the adsorption separation performance. The PSA cycle 

presented here is analyzed at room temperature. In the work by Jayaraman et al., (2004), nitrogen 

selective adsorbent was used on a methane rich stream to remove N2. The present work shows an 

analogous approach, however a methane selective adsorbent is used to treat a nitrogen rich stream 

to remove CH4. For this purpose, we adapted the PSA cycle proposed by Jayaraman et al., (2004) to 

investigate its performance using silicalite pellets. Therefore, no change in bed size, and step 

duration was proposed. However, a more detailed analysis regarding the cycle’s pressure profile 

was carried out in order to maximize nitrogen purity and recovery. 

Global optimization is one of the best approaches in order to maximize the objective function 

containing the desired dependent variables. However, PSA simulations are computationally 
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demanding, and this approach would require several PSA evaluations in order to find global 

maximum. To search over the dependent variable space for a good solution with a low amount of 

evaluations with a rational statistical approach, a rotatable central composite design (RCCD) 

(Hinkelmann & Kempthorne 2005) was employed. This approach is used when the response 

variables are influenced by various independent variables, in order to trace a quadratic response 

surface and analyze its curvature with a few set of points. This method is often used in experimental 

works however it is useful in several applications and was here for computational analisys. Table II.5 

presents the regularized independent variables and levels as Table II.6 displays simulation generated 

performance points for the RCCD approach. 

Table II.5 –Independent variables for the rotatable central composite design. 

Independent variables 
Levels 

-1.68 -1 0 1 1.68 

High Pressure, Ph (bar) 5.33 5.50 5.75 6.00 6.17 
Intermediate pressure, Pi (bar) 4.33 4.50 4.75 5.00 5.17 

Low pressure, Pl (bar) 0.07 0.10 0.15 0.20 0.23 
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Table II.6 – Dependent variables showing performance of the PSA cycles, using 16 sets 
of independent variables generated using RCCD criteria. The analysis was performed 

in order to maximize N2 purity. 

Ph Pi Pl CH4 purity CH4 Recovery N2 Purity N2 Recovery 

-1 -1 -1 0.2587 0.8687 0.9609 0.5602 
-1 -1 1 0.2506 0.8249 0.9489 0.5638 
-1 1 -1 0.2445 0.8871 0.9634 0.5158 
-1 1 1 0.2376 0.8479 0.9517 0.5190 
1 -1 -1 0.2720 0.8524 0.9589 0.5970 
1 -1 1 0.2628 0.8058 0.9469 0.6004 
1 1 -1 0.2575 0.8713 0.9614 0.5563 
1 1 1 0.2496 0.8292 0.9497 0.5594 

-1.68 0 0 0.2427 0.8622 0.9564 0.5245 
1.68 0 0 0.2639 0.8326 0.9530 0.5897 

0 -1.68 0 0.2658 0.8281 0.9523 0.5959 
0 1.68 0 0.2428 0.8636 0.9568 0.5242 
0 0 -1.68 0.2618 0.8894 0.9667 0.5571 
0 0 1.68 0.2479 0.8150 0.9461 0.5627 
0 0 0 0.2537 0.8470 0.9547 0.5596 
0 0 0 0.2537 0.8470 0.9547 0.5596 

 

Table II.7 – Statistical analysis correlating linear and quadratic effects of the 
independent variables on nitrogen purity. Std. Err stands for standard error, t(6) 

stands for Student’s t value with 6 degrees of freedom, -95% Cnf. Lim. stands for the 
lower limit of the effect value with 95% confidence and 95% Cnf. Lim. is analogous to 

the latter. P value is a function of the statistical set used in hypothesis tests. 

 Effect Std. Err. t(6) p-value  -95% Cnf. Lim.  95% Cnf. Lim. 

Mean 0.954678 0.000109 8731.445 0.000000 0.954410 0.954945 
Ph Linear -0.002001 0.000084 -23.847 0.000000 -0.002207 -0.001796 
Ph Quad -0.000002 0.000102 -0.022 0.982901 -0.000252 0.000247 
Pi Linear 0.002654 0.000084 31.627 0.000000 0.002449 0.002860 
Pi quad -0.000116 0.000102 -1.138 0.298479 -0.000365 0.000133 
Pl linear -0.012028 0.000084 -143.307 0.000000 -0.012233 -0.011822 
Pl  quad 0.001196 0.000102 11.732 0.000023 0.000946 0.001445 
Ph X Pi 0.000010 0.000110 0.095 0.927523 -0.000258 0.000279 
Ph X Pl 0.000005 0.000110 0.043 0.966924 -0.000264 0.000273 
Pi X Pl 0.000168 0.000110 1.532 0.176389 -0.000100 0.000436 

 

Table II.8 – Effects estimate ignoring statistically irrelevant factors. Column labels are 
analogous to the ones shown on Table II.7. 

 Effect Std. Err. t(11) P value  -95% Cnf. Lim.  95% Cnf. Lim. 

Mean 0.954612 0.000051 18606.36 0.000000 0.954499 0.954725 
Ph Linear -0.002001 0.000080 -25.13 0.000000 -0.002177 -0.001826 
Pi Linear 0.002654 0.000080 33.33 0.000000 0.002479 0.002830 
Pl linear -0.012028 0.000080 -151.01 0.000000 -0.012203 -0.011852 
Pl  quad 0.001231 0.000084 14.69 0.000000 0.001046 0.001415 
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On a first analysis the null hypothesis, stating that the response variable does not alter its value with 

a change in the independent variable within the range of the tests, is statistically analyzed with a 

degree of confidence of 95%. With this procedure, it is possible to determine the extension and also 

the signal of the effect. 

In Table II.8 is possible to reject the null hypothesis on four factors: high, intermediate and low 

pressures upon their linear factors as well as the quadratic factor of low pressure. Such factors are 

taken into consideration in order to construct the quadratic response surface. All other factors can 

be ignored due to the fact that their P values are higher than the chosen significance limit of 0.05. 

The final effects estimates are present in Table II.8. 

According to the effect estimates given on Table II.8, Low and High pressures negatively affects N2 

purity, while intermediate pressure positively affects such dependent variable. This way, the best 

condition can be found by having low and high pressures in the lower bound, while keeping 

intermediate pressure in the upper bound. These effects can be used to model a quadratic surface 

of responses, giving: 

 𝑃𝑢𝑟𝑖𝑡𝑦 = 0.48 − 1.0 ∗ 10−3𝑃ℎ + 1.3 ∗ 10−4𝑃𝑖 − 6.0 ∗ 10−3𝑃𝑙 + 6.2 ∗ 10−4𝑃𝑙
2  (20) 

As it can be seen in Figure II.8, the quadratic factor in low pressure effect is not high enough to give 

a local stationary point in the range of the tests, thus influencing the surface plot only with a slight 

curvature. It is also worthy to mention that nitrogen purity can be further increased by lowering P l 

even more. However, vacuum purging the column spends a great amount of energy, so it was 

arbitrated that 0.1 bar will be a lower pressure limit for such step.  

Furthermore, it can also be observed that the closer Ph and Pi are, the greater is N2 purity. 

Nonetheless, it would be more appropriate to eliminate co-current blowdown step, leading to a 

work of process synthesis, which is out of the scope of the present paper. So, for the purpose of this 

simulation, it was also arbitrated that a minimum offset between such pressures should be 0.5 bar. 
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Figure II.8 – Surface generated by the quadratic model given in equation (20) keeping 
Ph on the lower level (6.0 bar).  

 

Table II.9 – PSA performance 

Operational conditions   
 High pressure, Ph (bar) 6.0 
 Intermediate pressure, Pi (bar) 5.5 
 Low pressure, Pl (bar) 0.1 
 Feed velocity, νf (m/s) 0.085 

Performance variables  

 N2 Purity (%) 96.61% 
 N2 Recovery (%) 50.93% 
 N2 Productivity (kg N2 kg Ads-1 hr-1) 0.0417 
 CH4 Purity (%) 24.42% 
 CH4 Recovery (%) 89.81% 
  CH4 Productivity (kg CH4 kg Ads-1 hr-1) 0.0074 

 

With the interest in further refining the results presented so far, the performance was evaluated by 

sweeping Pi values between 3.5 and 7.5 bar, while keeping Ph 0.5 bar greater than the latter variable. 

As it can be seen in Figure II.9, five PSA simulations were carried out, demonstrating that there is a 

local maximum of N2 purity around 5.5 bar, and a local minimum N2 recovery around 4.5 bar.  



 

35 
 

 

Figure II.9 – Influence of intermediate pressure on N2 purity and recovery. Each point 
was generated by a different PSA calculation. Lines are spline fitting of the data to 

improve visualization. 

Another important analysis comprises the effect of feed velocity on response variables describing 

separation performance. Figure II.10 shows purity and recovery responses of both species by varying 

the given independent variable. It is possible to visualize that there is a tradeoff between N2 purity 

and recovery, where the first decreases while the latter increases with inlet velocity. It is possible to 

conclude that the value of 0.085 m/s is a satisfactory value for allowing nitrogen purity to be greater 

than 96%, while keeping recovery beyond 50%. A full set of performance variables on that point can 

be found on Table II.9, which represents the best PSA operational conditions given the here 

presented analysis. 
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Figure II.10 – Simulated PSA cycles on different inlet velocity conditions. Influence on 
purity, recovery and productivity of both methane and nitrogen. 

Chapter II.4 - Conclusion 

In the present paper, an adsorption process was analyzed in order to mitigate the methane 

concentration arising from a cryogenic nitrogen removal unit tail gas. The differential algebraic 

equations system was verified by correlation with experimental points present elsewhere in the 

literature, showing good agreement between calculated and experimental data. A RCCD method 

was employed in order to find the best set of operational pressures to conduct a PSA separation of 

the binary mixture. A feed velocity analysis was also conducted, showing the existence of a tradeoff 

between nitrogen purity and recovery across the range of inlet flow test. Upon an inlet feed with 

85% nitrogen and the selected values of pressures and velocity, the process presented  nitrogen 

purity greater than 96% while allowing a recovery beyond 50%. 

 

Chapter II.5 - Appendix I 

The non-dimensional form of the component mass balance (21) is achieved by substituting equation 

(3) in (1) and also by substituting the dimensionless variables. Furthermore, non-dimensional 
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equations regarding total mass (22), particle (23) and energy balance (24), as well as pressure drop 

(25) can be found below. 
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Dimensionless variables: 
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Dimensionless groups 

𝑃𝑒 =
𝑣0𝐿

𝐷𝑎𝑥
 (26) 
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Chapter II.6 Addendum 

[1] All of the equations, as well as most of the simplifications were all taken from the work of 

Haghpanah et al., 2014 that, in turn, were based upon the development presented by Ruthven, 

1984. For the sake of CPU speed, the simplification made by this work is the one of constant wall 

temperature, while most of the literature in this field considers a refrigerating coat. 

[2] The total mass balance is the sum of all component mass balances, considering ∑𝑦𝑖 = 1. 

However, in the formulation of the problem there is a third component not mentioned anywhere 

else in this work, which is the inert component that fills the bed at 𝑡 = 0 in the beginning of all 

simulations. For the purposes of this work, such inert has negligible interaction with the adsorbent. 

[3] In this equation, the thermal advection is: 

𝐶𝑝,𝑔

𝜕(𝑣 ∙ 𝜌𝑔 ∙ 𝑇)

𝜕𝑧
 

After applying the ideal gas law 𝜌𝑔 = 𝑃/(𝑅𝑇), we obtain the second term on the right-hand side of 

the energy balance equation. 

[4] We extracted the solid properties as well as parameters of the Langmuir adsorption 

isotherm from the work of Delgado et al., 2006 and Delgado et al., 2011. While our published article 

in the journal reports a Dax of 1.4 x 10-2 m2 s-1 for the breakthrough case, the correct value used in 

the simulations was 2.56 x 10-4. We also used the bed dimensions based upon these works. We 

further analyze these design parameters on the next chapter. We determined the axial dispersion 

coefficient using a correlation provided by Delgado et al., 2006. The thermal axial dispersion 

coefficient comes from the work of Farooq & Ruthven 1990. The determination of the Radial heat 

transfer coefficient considers the axial heat transfer inside the column. 
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[5] While we used the DASSL subroutine as provided by the author, we implemented our own 

code for the calling subroutine, which included the FVM, the boundary conditions and the PSA 

cycles. Regarding the DASSL subroutine, we chose an absolute tolerance of 1.0 x 10-8 and a relative 

tolerance of 1.0 x 10-6. When using DASSL, each time step consists of a new call to the integrator, 

which, in our case, occurred for every 3.0 x 10-5 seconds in simulated time. All of the remaining 

parameters used were DASSL’s default options.  

[6] The maximum adsorbed concentration 𝑞𝑠,𝑖  as provided in the table has dimension of 

𝑚𝑜𝑙 𝑘𝑔−1. However, it is important to notice that for the sake of dimensional consistency of 

equations (1), (2) and (4), we multiply this quantity by the solid specific mass in (16), obtaining an 

adsorbed concentration with dimensions of 𝑚𝑜𝑙 𝑚−3. 

[7] One of the necessities of using TVD methods and WENO is the steep discontinuity during 

the transition of PSA steps on the inlet. Due to the axial dispersion, the concentration profile on the 

outlet is already fairly dispersed. However, most methods fail to converge due to abrupt changes in 

all state variables in the inlet boundary condition. 

[8] On unpublished results, we compared various mesh sizes to find the better suited for our 

case. We found that 20-30 finite volumes presents a good convergence. Therefore, we use 50 

volumes for the sake of security. 
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Chapter III - Machine Learning Model and Optimization 

of a PSA Unit for Methane-Nitrogen Separation 

In this work we study the separation of N2/CH4 with a bed packed with silicalite. Pressure swing 

adsorption (PSA) is a competitive technology for this task. Predicting PSA performance is a time 

consuming computational intensive problem. Direct optimization of the system of differential 

algebraic equations (DAE) describing the phenomena takes an impractical amount of time. We then 

analyze the suitability of using artificial neural networks (ANN) as a surrogate model to predict and 

optimize the PSA performance. Using the ANN surrogate model, optimization time decreased from 

15.7 hours to 50 seconds. We demonstrate that the PSA cycle proposed can achieve an optimized 

99.5% nitrogen purity stream from an 85% inlet stream and a 50% purity stream from a 10% inlet 

stream. We also show that nitrogen recovery can be at most 90%. We further carry out a multi-

objective optimization to demonstrate the tradeoff curve between nitrogen purity and recovery. 

This chapter is based on the published article:  

Hermes R. Sant Anna, Amaro G. Barreto, Frederico W. Tavares, Maurício B. de Souza, Machine 
learning model and optimization of a PSA unit for methane-nitrogen separation, Computers 
& Chemical Engineering, Volume 104, 2017, Pages 377-391, ISSN 0098-1354, 
http://dx.doi.org/10.1016/j.compchemeng.2017.05.006. 

 

http://dx.doi.org/10.1016/j.compchemeng.2017.05.006
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Chapter III.1 - Introduction 

Among several contaminants that may be present in natural gas, there is a great interest in removing 

nitrogen, an inert component, from wellhead streams (Kidnay and Parrish, 2006; Kuo et al., 2012). 

Two scenarios require the usage of Nitrogen Removal Units (NRU): gas upgrade to meet pipeline 

specifications and Enhanced Oil Recovery (EOR). Pipeline specification for the nitrogen content is 

usually up to 4% (Lokhandwala et al., 2010). Different authors report high N2 concentration wells 

usually ranging from 6% to 14% (Jackson et al., 2005; Madeira, 2008; Streich, 1970), although 

reservoirs with higher nitrogen content may occur (Krooss et al., 1995). The presence of this inert 

molecule on natural gas may cause several problems like heating value reduction, energy waste in 

compression systems and pipeline inefficiency. On the other hand, EOR is a technique to increase 

oil production by injecting nitrogen into stimulation wells, increasing the nitrogen content of the 

natural gas throughout the reservoir production cycle (Kidnay and Parrish, 2006). Usual nitrogen 

content for EOR applications can range from 4% to 85% (MacKenzie et al., 2002). Physicochemical 

separation of nitrogen and methane – the predominant component in natural gas – is a difficult task 

because their molecular properties such as kinetic diameter, dipole moment and critical 

temperature are similar (Tagliabue et al., 2009). The most frequently used NRU technology is 

cryogenic distillation. However, such process operates under temperatures as low as -180°C, which 

makes it both capital and energy intensive. Moreover, this process is economically feasible for 

reservoirs producing more than 400 MSm3/d. Membrane permeation and adsorption are two 

alternative processes employed for 15 – 700 MSm3/d and 60 – 400 MSm3/d natural gas flow rate 

respectively (Lokhandwala et al., 2010). 

Phenomenological modeling of pressure swing adsorption (PSA) systems for gaseous separation is 

an established subject in the literature. Mass, energy and momentum balances, as well as 

constitutive equations regarding adsorption equilibrium and kinetics form a system of algebraic 

differential equations (DAE) (Ruthven et al., 1994). In most cases, when simplifications are 

infeasible, there is a need to use numerical methods to simulate gas flowing through a packed bed 

for separation. Since the adsorption phenomena depend on both time and space, there are two 

main approaches to solve the DAE system: discretizing time and space derivatives and solving them 

simultaneously or using a two-step method of lines (Biegler et al., 2005). This work uses the second 

approach by first discretizing the spatial derivatives using a finite volume method (FVM) and solving 

it in the time domain by a standard time integration routine (Sant Anna et al., 2016). We explain this 
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approach in more details throughout this text. Owing to the nature of the conservation equations, 

sharp fronts of concentration, temperature and pressure may propagate along the adsorption 

column (Haghpanah et al., 2013). These steep fronts may cause significant numerical problems, such 

as numerical dispersion (smearing) and oscillation since the resulting set of ODEs becomes stiff and 

requires a numerically stable integration routine (Biegler et al., 2005). Numerical integration of the 

DAE system becomes a computationally intensive problem. As we will present later, this is not due 

to the number of equations and control volumes, but to the complexity of the spatial discretization 

scheme as well as the number of steps required by the time integration routine to simulate one 

second of operation, in order to capture accurately the sharp fronts mentioned above. 

The amount of time it takes to make multiple PSA simulations can be sometimes intractable, 

especially for the case of optimization, which requires multiple calls to the DAE model. In this case, 

one can use surrogate models (also known as substitute models, meta-models or reduced-order 

models). Surrogate models are functional approximations of response variables constructed with 

samples of the input-output space, which can arise from experimental or simulation data. There has 

been recently an extensive usage of such approach in engineering research (Capitanescu et al., 2015; 

Eason and Cremaschi, 2014; Fahmi and Cremaschi, 2012; Graciano and Le Roux, 2013). Many 

surrogate model techniques have been developed over the past few decades such as Polynomial 

Surface Response Models (PRSM), Kriging, Radial Basis Functions, Support Vector Regression and 

Artificial neural networks (Garud et al., 2017). A comprehensive comparison of these techniques for 

engineering modeling, design and optimization is available in the literature (Forrester et al., 2008; 

Forrester and Keane, 2009; Nguyen et al., 2014; Queipo et al., 2005). In the field of adsorptive 

separation processes, proper orthogonal decomposition (POD) has been analyzed for simulated 

moving beds model and optimization (Li et al., 2014), Kriging has been used in the design and 

optimization of PSA for CO2/N2 separation (Beck et al., 2012, 2015). Artificial Neural Networks (ANN) 

surrogate models have been used for optimizing the separation of N2/Air and H2/CO gaseous 

mixtures (Lewandowski et al., 1998; Sundaram, 1999). In this work, we use ANN surrogate models 

to optimize the PSA separation of N2/CH4 mixtures. 
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Optimization of PSA processes is a subject of great interest by the literature over the last years 

(Agarwal et al., 2009; Boukouvala et al., 2017; First et al., 2014; Hasan et al., 2012; Jiang et al., 

2003, 2005; Ko et al., 2005). In order to summarize the work of PSA optimization, most methods 

fall into one of the four categories (Biegler et al., 2005): 

List of symbols: 

b0 : Langmuir isotherm affinity constant 

cov : Covariance 

Cp : Heat capacity 

Dc : Crystal diffusivity 

𝐷𝑐𝑜𝑙 : Column diameter 

df : Degrees of freedom 
Di,j : Gaseous diffusivity 

𝔼 : Expected value 

EBV : Bias+variance error 
ELT : Repeated learning-testing error 

Eout : Out of sample error 

eq : Unit vector in weight space 

Etest : Testing error 

Etrain : Training error 

Eval : Validation error 

F0 : F-value (fisher test) 
f1−α,dfANN,dflinear

 : F distribution 

percentage point 

g(D) : repeated learning-testing 

regression function 
g̅(x) : mean repeated learning-testing 

regression function 

H : Hessian matrix of errors with 

respect to the weights 
hANN : ANN regression model 

kg : Gaseous conductivity 

Lq : Error increase with removal of 𝑤𝑞 

L : Column length 

lb : Lower bound (sampling. 
optimization) 

Mw : Mole weight 
𝑛𝑖,𝑗: Mole flow 

Ph : Adsorption pressure 
Pl : Counter-current blowdown 

pressure 

Pm : Co- current blowdown pressure 

Pur : Purity 
Q : Volumetric flow 

q𝑚𝑎𝑥 : Langmuir isotherm maximum 

adsorbed concentration 

rc : Crystal radius 
Rec : Recovery 

rp : Pellet radius 

s2 : Sample variance 
sj : Node activation 

SS : Sum of squares 
T : Temperature 

t : Time 

tad : Adsorption time 

tco : Compression time 

tdj : Co-current desorption time 

tdr : Counter-current desorption time 

ub : Upper bound (sampling, 
optimization) 
𝑤𝑖,𝑗  : Connection weight  

WT : Weight matrix 
xi

′ : Dimensionless variable 

x𝑗 : Input vector 

yj : Target output vector 

yN2,f : feed nitrogen mole fraction 

zj : Sanple  

Z : Sample domain 

 

Greek letters: 

 

Δj : Equation error 

−ΔH : Adsorption enthalpy 

ε : Bed voidage fraction 

εp : Particle porosity  

µ : Viscosity  

ρyn ,h(xn) : Pearson correlation 

ρp : Particle density 

σ̂2 : Model prediction variance 

σ : Standard deviation 

θ(sj) : Activation function 
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 Surrogate based optimization (SBO): A simplified (surrogate) model interpolates data from 

plant or from a more detailed model. An optimization procedure is then performed on the 

simplified model and the results are compared with the more detailed one. 

 Black-box optimization:  The optimizer searches the optimization direction on the 

arguments through successive calls to an input-output function, which returns the objective 

function evaluation. The PSA model runs inside an inner loop each time the optimizer calls 

the black-box function and the gradient matrix arises from finite differences. 

 Complete discretization based: In this approach, the complete discretization strategy is 

applied where bed equations, objective functions and constraints are solved 

simultaneously.  

 Simultaneous Tailored Optimization: In this approach, bed models are solved implicitly in 

order to obtain sensitivities as well as values of the constraints and objective function. 

On a previous work, we have proposed a hybrid process, combining cryogenic distillation with PSA 

(Sant Anna et al., 2016). In this arrangement, placing a PSA cycle to purify the waste nitrogen stream 

could lead to reductions in energy consumption of the cryogenic process. Due to the nature of the 

current leaving the cryogenic unit Figure III.1, the main goal of the PSA unit was to purify the waste 

nitrogen stream from a methane contaminated inlet stream. We also compared three finite volumes 

methods (Van Leer, Superbee and WENO) for PSA modeling with each other and with the Upwind 

Difference Scheme, where we concluded that WENO was the most stable, robust and fastest. 

 

Figure III.1 – Coupled cryogenic distillation-PSA scheme 

The novelty of this work relies on the construction of a surrogate model to analyze a single bed 

vacuum pressure swing adsorption process (VPSA) packed with silicalite zeolite for the separation 

of CH4 and N2 on a wide range of mole fractions. Here, our main interest is in producing a purified 

waste nitrogen stream. We divide this paper as follows: In section 2 we present details about the 
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DAE, numerical methods and PSA sequence used in the phenomenological modeling, including the 

adsorbent specifications as well as adsorption isotherms. In section 3 we present the methodology 

employed for the ANN surrogate model generation, including the sampling technique and the 

pruning algorithm to avoid overfitting. In section 4, we discuss the ideal number of samples to obtain 

a proper ANN surrogate model and make different error estimation procedures. In section 5, we 

present the optimization strategy, with comments on the performance and convergence of the 

selected approach as well as the s tradeoff curves on the performance variables. 

Chapter III.2 - Phenomenological adsorption modeling 

Pressure swing adsorption is a cyclic dynamic process comprising two major steps: 

 Adsorption (Production): A gaseous mixture stream permeates the fixed bed, where the 

solid packing selectively retains the molecule with more affinity, while the molecule with 

less affinity moves quicker in the direction of the stream, producing a product purified on 

the second component. 

 Desorption (Recovery): The pressure inside the column decreases in order to remove the 

retained substances in the gas/solid interface, regenerating the bed for another adsorption 

step. 

During its operation, all system variables are constantly changing through time and space in cycles. 

When two or more consecutive cycles perform in a similar way, the process achieves a cyclic steady 

state (CSS). We found that CSS occurs on average under 5 cycles, therefore, all simulations use 20 

cycles for a good safety margin. To model this phenomenon, simplifications and assumptions widely 

used in the adsorption field are necessary such as axially dispersed plug-flow, variable fluid velocity, 

local thermal equilibrium between the solid and the gas inside the pores, ideal gas, linear driving 

force kinetics (LDF), negligible radial concentration and temperature gradients. The system of 

differential algebraic equations is composed of the component mass balance, total mass balance, 

ideal gas law, energy balance, pressure drop, adsorption isotherm and linear driving force (LDF) 

mass transfer. We presented and discussed the complete set of equations as well as boundary 

conditions for such a problem on our previous work (Sant Anna et al., 2016) and we provide them 

on Appendix A, for the sake of reproducibility. 

This system applies over the cylindrical shape of the packed bed. We use the method of lines to 

solve the system in space and time. There is a wide variety of techniques to calculate the spatial 
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distribution of the process variables such as orthogonal collocation, finite differences, finite 

elements and finite volumes (Webley and He, 2000). Since packed bed adsorption presents sharp 

wave fronts of concentration and temperature, numerical methods must be accurate in order to 

avoid unrealistic numerical oscillation and dispersion (Jiang et al., 2003). Higher order methods are 

especially good to capture sharp variation fronts but are prone to oscillate over flat regions. Low 

order methods can avoid oscillation but at the cost of smearing the high gradient fronts. Recent 

studies suggest that total variation diminishing (TVD) finite volume methods with flux limiters 

(LeVeque, 2002) and weighted essentially non-oscillatory (WENO) (Liu et al., 1994) schemes can 

address both of the previously presented shortcomings, which are characteristic problems of 

hyperbolic conservation laws. Another paper in the literature compares a simple upwind 

differentiation scheme (UDS), TVD methods with two types of flux limiters (Van Leer and Superbee) 

and WENO (Haghpanah et al., 2013). On our previous work (Sant Anna et al., 2016), we tested these 

four methods for N2/CH4 separation. WENO was the strongest candidate because of its stability, 

absence of smearing and computational performance. Therefore, we use such finite volumes 

technique (Appendix A) throughout the course of this work.  

In regards to time variations of the process variables, we use DASSL time integration routine 

(Petzold, 1982) for initial value DAE problems with implicit variables. DASSL is a code for solving 

index zero and one systems of differential algebraic equations of the form: 

𝐹(𝑡, 𝑦, 𝑦′) = 0 (1) 

𝑦(𝑡0) = 𝑦0 (2) 

𝑦′(𝑡0) = 𝑦0
′  (3) 

where 𝐹, 𝑦 and 𝑦′ are N-dimensional vectors. This method uses a variable step size variable order 

fixed leading coefficient implementation of backward differentiation formulas (BDF) to advance the 

solution from one time step to the next. DASSL also employs an interpolant to compute the solution 

between mesh points (Brenan et al., 1996). These capabilities favor the convergence of time 

integration for stiff problems such as hyperbolic conservation laws and fast computations of 

advancement in time. In fact, another work compared the performance of DASSL against successive 

substitution method (SS) and block LU decomposition (BLUD) procedure for PSA air drying and PSA 

solvent vapor recovery. The author found that DASSL was twice as fast as BLUD and one order of 

magnitude faster than SS (Liu et al., 1998). 
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To summarize the two-step approach, we first discretized the axial differential terms on Appendix 

A while keeping the time differential terms intact. On the right-hand side of each equation, we 

substitute the zero term with an error term (Δ𝑗  𝑗 = 1 … 𝑁𝐸𝑄). We then call the time integration 

routine providing exact initial values for 𝑦 and 𝑦′. On the second step, the inner calculation algorithm 

of DASSL takes care of using the proper BDF approximation on the time derivatives in order to 

decrease the value of Δj until it satisfies the relative and absolute tolerances defined in the calling 

function (Brenan et al., 1996; Petzold, 1982). We implemented the first step in Fortran 90, while 

DASSL’s authors implemented the second step in Fortran 77. Although not required by the author, 

it is polite to disclose that DASSL is a piece of software available in the public domain. Finally, we 

present on Table III.1 the simulation parameters used in the finite volumes scheme and in the calling 

of DASSL subroutine. The number of control volumes was formally determined in our previous work 

(Sant Anna et al., 2016). Since DASSL’s algorithm is of variable step size, the specified time step 

serves the purpose of returning an equally spaced time grid. Therefore, although we retrieve 3.3 105 

time steps per second of simulation, the routine may evaluate the DAE on even more time steps. 

Absolute and relative errors were determined by our accumulated experience in simulating this 

system, in order to guarantee stability and accuracy. These facts indicate that the main reason for 

the computational burden in simulating PSA is not an elevated number of equations, but a small 

step size and low tolerances of the DASSL time integrator in order to avoid numerical anomalies. 

Table III.1 - Numerical simulation parameters used in the DAE system 

Components 2 

Finite Volumes 50 

Equations 300 

Time Step (s) 3.0 10-05 

Absolute Tolerance 1.0 10-08 

Relative tolerance 1.0 10-06 

Chapter III.2.1 - PSA process 

The process operates under four steps as on Figure III.2, namely: 

 Pressurization: pressure inside the bed increases from the minimum to the highest 

established value, PL and PH respectively using the feed gas at the column inlet.  

 Adsorption: feed gas with a methane mole fraction of yCH4,f enters the bed with a Q 

volumetric flow rate. This step generates the desired product, which is a purified nitrogen 

gas. 
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 Co-current blowdown: gas leaves the column in the direction of the adsorption flow by 

decreasing the inner pressure from PH to PM. 

 Counter-current blowdown: the purging of the column occurs in the counter-current 

direction by decreasing the pressure from PM to PL. 

 

 

Figure III.2 – Sequence of steps performed on a pressure swing adsorption (PSA) cycle 

Besides the simulation parameters, phenomenological modeling requires physical constants of the 

solid adsorbent and the gaseous mixture as well as variables regarding the operational parameters. 

The solid adsorbent used in this analysis is pelletized silicalite. Its necessary physical characteristics 

are pellet radius, particle density, crystal size, particle porosity and tortuosity. The packed bed 

requires length, diameter and voidage fraction parameters. The gaseous mixture comprises of 

methane and nitrogen in several mole fractions. In order to calculate the axial dispersion coefficient, 

as well as the LDF mas transfer constant used in the model, we need physical constants from the 

gases such as molar weight, viscosity, gaseous diffusivity and micropore diffusivity. Finally, in order 

to calculate heat transfer parameters we need thermal coefficients such as the solid and gas heat 

capacities as well as the thermal conductivity of the gases. We present each parameter above-

mentioned on Table III.2.  

Table III.2 – Solid and gases parameters for phenomenological simulation (Delgado et 
al., 2006) 

Solid parameters  

 Adsorbent Silicalite 
 Pellet radius, rp (m) 0.7 x 10-3 
 Particle density, ρp (kg m-3) 1070 
 Cristal size, rc (m) 3.0 x 10-6 
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Particle porosity, εp 0.59 

 Tortuosity, τ’ 4.00 
 Bed voidage fraction, ε 0.52 
 Specific heat, Cp (J mol K-1) 1000 

Gas parameters (at 293K)  

N2   
 Molar weight, Mw (10-3 kg mol-1 ) 28 
 Viscosity, µ (10-5 Pa s) 1.74 
 Specific heat, Cp (J mol K-1) 29 
 Gaseous diffusivity, DN2/CH4 (10-5 m2 s-1) 2.105 
 Micropore diffusivity, Dc (10-9 m2 s-1) 1 
 Thermal conductivity, kg (W m-1 K-1) 0.0255 

CH4  
 Molar weight, Mw (10-3 kg mol-1) 16 
 Viscosity, µ (10-5 Pa s) 1.07 
 Specific heat, Cp (J mol K-1) 36 
 Gaseous diffusivity, DCH4/N2 (10-5 m2 s-1) 2.105 
 Micropore diffusivity, Dc (10-9 m2 s-1) 0.9 
 Thermal conductivity, kg (W m-1 K-1) 0.0333 

 

We obtained those data from another work in the literature (Delgado et al., 2006). The necessary 

equations to calculate the dispersion coefficients, as well as the LDF constant can be found 

elsewhere in the literature (Delgado et al., 2006; Farooq and Ruthven, 1990) and we present them 

on Appendix B.  

Adsorption of N2 and CH4 on silicalite pellets is an equilibrium controlled phenomenon (Delgado et 

al., 2006, 2011; Sant Anna et al., 2016). To describe the adsorption equilibrium we used Langmuir 

isotherms. Table III.3 presents the adsorption parameters used throughout this work. 

Table III.3 - Langmuir equilibrium isotherm (Delgado et al., 2011) 

 b0 (10-9 Pa-1) -ΔH (kJ mol-1) qmax (mol kg-1) 

N2 1.57 15.5 1.72 
CH4 1.37 18.5 2.01 

Figure II.7 presents profiles of pressure and temperature as well as nitrogen and methane 

concentrations during 20 PSA cycles. The bed is initially filled with an inert gas at 1 bar, which is 

expelled from the column during the first adsorption step. As Figure III.3 shows, there is a 

considerable difference between first and second cycles and the Cyclic Steady State (CSS) occurs 

after about 5 cycles for mole fractions and  about 10 cycles for temperature. 
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Figure III.3 - Profiles of pressure, CH4 mole fraction, N2 mole fractions and 
temperature at the outlet of the bed at each step. 

There are two separation performance indicators in this case: purity (4) and recovery (5) for the 𝑖𝑡ℎ 

component, where 𝑖 is either N2 or CH4. We are interested in evaluating nitrogen purity and recovery 

at the adsorption phase outlet, as this stream is a final byproduct of the process, which will proceed 

to atmospheric venting. Methane purity and recovery are of secondary interest, since this stream 

will be recycled to the cryogenic distillation process. 

𝑃𝑢𝑟𝑖 =
∫ 𝑛𝑖,𝑜𝑢𝑡𝑑𝑡

𝑡𝑎𝑑

0

∫ (𝑛𝑁2 ,𝑜𝑢𝑡 + 𝑛𝐶𝐻4,𝑜𝑢𝑡)𝑑𝑡
𝑡𝑎𝑑

0

 (4) 

𝑅𝑒𝑐𝑖 =
∫ 𝑛𝑖,𝑜𝑢𝑡𝑑𝑡

𝑡𝑎𝑑

0
+ ∫ 𝑛𝑖,𝑜𝑢𝑡𝑑𝑡

𝑡𝑑𝑗

0

∫ 𝑛𝑖,𝑖𝑛𝑑𝑡
𝑡𝑐𝑜

0
+ ∫ 𝑛𝑖,𝑖𝑛𝑑𝑡

𝑡𝑎𝑑

0

 (5) 

Chapter III.3 - Machine learning 

In this work, we use triple layered feed-forward artificial neural networks (ANN) as the surrogate 

model [1]. A neural network is a massively parallel-distributed processor made of simple processing 

units, which has a natural propensity for storing experiential knowledge and making it available for 

use (Haykin, 2004). The aim is to find a powerful synaptic modification rule that will allow an 

arbitrarily connected neural network to develop an internal structure that is appropriate for a 

particular task domain. The task is specified by giving the desired state vector of the output units 
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for each state vector of input units (Rumelhart et al., 1986). We use a sequential workflow in order 

to obtain our ANN model for PSA separation of N2/CH4 (Figure III.4). We sample the input space 

using a Latin Hypercube Sampling (LHS) technique and then calculate the corresponding output 

vectors with the DAE model presented earlier in this work. We determine the proper number of 

samples for our network by using training-testing error analysis. After that, we make statistical 

analysis to determine its predictability (repeated learning-testing cross-validation, bias+variance 

decomposition, out of sample validation and outlier detection). We further compare this model 

against N-dimensional linear regression to assure that a nonlinear model is necessary. 

 

Figure III.4- Machine Learning workflow 

Chapter III.3.1 - Input Space Sampling 

The state vector of input units consists of twelve process variables 𝑥𝑗 = 𝑥𝑖,𝑗, 𝑖 ∈ 𝐼 = {1,2, … ,12} , 

where seven units (𝑥𝑗,1 − 𝑥𝑗,7) represent the operational conditions of the plant (𝑃ℎ, 𝑃𝑚, 𝑃𝑙,, 𝑡𝑎𝑑, 

𝑡𝑑𝑗, 𝑡𝑑𝑟, 𝑡𝑐𝑜), three units (𝑥𝑗,8,, 𝑥𝑗,9 and 𝑥𝑗,12) represent the inlet gas specifications (𝑄, 𝑇 and 𝑦𝑁2
), 

and two units (𝑥𝑗,10 and 𝑥𝑗,11) represent the process design specifications (𝐿 and 𝐷𝑐). The chosen 

parameters described above are the necessary constants, i.e. apart from the bed, solid and gases 

constants, to simulate a PSA process using the DAE model. The aim of this work is to provide a 

surrogate model exhaustive in its variables. Therefore, we avoid making simplifications in order 

reduce the input vector size. Some simplifications that are worthy to mention is that we consider 

the inlet gas pressure equal to the adsorption pressure and the column wall temperature equal to 

the inlet gas temperature. Moreover, to our understanding, all the remaining variables (e.g. 

interstitial velocity, cross section area, Péclet number etc.) derive from the twelve previously 

mentioned variables and we rule them out from our analysis. These considerations by no means 

eliminate the possibility of any correlation between any subset of variables in the state vector of 
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inputs. Instead, we assume that they are not relevant, since our interest rests on the predictability 

of the model rather than extracting information from model parameters. 

Table III.4 – Upper and lower bounds of input variables for the sampling plan 

 Ph (bar) Pm (bar) Pl (bar) Tad (s) Tdj (s) Tdr (s) Tco (s) Q (m3/s) T (K) L (m) Dc (m) Yf 

Lower 4.00 4.00 0.10 20.00 10.00 10.00 20.00 1.00 10-3 273.00 1.00 0.10 0.10 

Upper 6.00 6.00 0.20 60.00 50.00 50.00 30.00 3.00 10-3 323.00 3.00 0.30 0.90 

 

We chose 1300 samples 𝑥𝑗 , 𝑗 ∈ 𝐽 = {1,2, … ,1300} from the input state space 𝑋 (Table III.4) using 

Latin Hypercube Sampling (LHS) with genetic algorithm (Mckay et al., 2000; Stocki, 2005). Using this 

approach, we intend to generate a stratified sampling plan satisfying the Latin Hypercube condition, 

i.e. the projection of each sample hypercube on each of the twelve axes must not overlap the 

projection of another hypercube, while maximizing the S optimality condition. S-optimality seeks to 

maximize the mean distance from each design point to all the other points in the design, so the 

points are as spread as possible. With the samples from the input state space, we generated 1300 

corresponding samples 𝑦𝑗 , 𝑗 ∈ 𝐽 = {1,2, … ,1300}  of the output state space 𝑌, where each unit in 

the state vector of outputs represents respectively N2 purity, N2 recovery, CH4 purity and CH4 

recovery. With this sampling plan, we obtained a dataset containing 1300 input-output samples 

 𝑧𝑗 = (𝑥𝑗 , 𝑦𝑗) , 𝑗 ∈ 𝐽 = {1,2, … ,1300} of the input-output space 𝑍 = (𝑋, 𝑌). 

Chapter III.3.2 - Neural networks 

In order to capture the non-linearity in the data, we use multilayered feed-forward artificial neural 

networks. The network contains one input layer, one output layer and one hidden layer as presented 

in Figure III.5 (Abu-Mostafa et al., 2012; Baughman and Liu, 1995).  
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Figure III.5 – Diagram showing the neural network layout.  

The input layer represents a receiver for the normalized input variables, as no mathematical 

operation happens inside such nodes. We normalize each unit in the state vectors of inputs in the 

dataset between zero and one according to (6). 

𝑥𝑖,𝑗
′ =

𝑥𝑖,𝑗 − min
𝑗 ∈ 𝐽

𝑥𝑖,𝑗

max
𝑗 ∈ 𝐽

𝑥𝑖,𝑗 − min
𝑗 ∈ 𝐽

𝑥𝑖,𝑗
 (6) 

Each node in the hidden layer performs a sequence of two mathematical operations. The first 

operation calculates the node activation as a weighted sum of the units in the state vector of inputs 

(7),  

𝑠𝑘  (𝑥𝑗) = ∑ 𝑤𝑖,𝑘
(1)

𝑥𝑖,𝑗

12

𝑖=0

 (7) 

where 𝑘 ∈ 𝐾 = 1,2, … , 𝑁ℎ𝑖𝑑𝑑𝑒𝑛 is the position of the neuron in the hidden layer. One entry is added 

to the state vector of inputs corresponding to 𝑥0,𝑗 = 1, which is used to determine the node bias. 

The second operation transforms the result of the activation into the hidden layer output using a 

logistic activation function (8). 

𝜃(𝑠𝑘) =
1

1 + 𝑒−𝑠𝑘
 (8) 

The neural networks considered contains a single node on the output layer with a logistic activation 

function. Therefore, we developed one neural network per unit in the state vector of outputs. The 

neural network model can be compactly written as its hypothesis set (9). 
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ℎ𝐴𝑁𝑁(𝑥𝑗) = 𝜃 ( ∑ 𝑤𝑘,1
(2)

𝜃(𝑠𝑘(𝑥𝑗))

𝑁ℎ𝑖𝑑𝑑𝑒𝑛

𝑘=0

) (9) 

Again, one entry is 𝜃 (𝑠0(𝑥𝑗)) = 1 added to the vector arising from the hidden layer to account for 

the output neuron bias. 

Chapter III.3.3 - Training and testing the neural networks 

We trained a single different ANN model for each unit in the state vector of outputs (N2 purity, N2 

recovery, CH4 purity and CH4 recovery). The learning algorithm used in this work is the gradient 

descent (steepest descent) method. The standard backpropagation (backward propagation of 

errors) algorithm calculates the partial derivatives of the mean squared error between each target 

value and the network output regarding the weight values (Rumelhart et al., 1986). The gradient 

descent technique updates the weight values to minimize the mean squared error (MSE) (10). 

Gradient descent is an optimization procedure that relies on first order derivatives to minimize the 

MSE. It is possible to use second order derivatives in the optimization procedures, as is the case of 

the Davidson-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods. 

However, the hessian updates in such methods cast a heavy computational burden to ANN training 

(Leonard and Kramer, 1990).  

𝐸(ℎ𝐴𝑁𝑁) =
1

𝑁𝑠𝑎𝑛𝑝𝑙𝑒𝑠  ∑ (ℎ(𝑥𝑛) − 𝑦𝑛)2

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛=1

 (10) 

𝜌𝑦𝑛,ℎ(𝑥𝑛) =
𝑐𝑜𝑣(𝑦𝑛, ℎ(𝑥𝑛))

𝜎𝑦𝑛
𝜎ℎ(𝑥𝑛)

 (11) 

In order to evaluate the convergence and generalization of the learning algorithm, we train the 

network with 80% of the available samples to calculate the approximation error 𝐸𝑡𝑟𝑎𝑖𝑛(ℎ(𝑥𝑛)) or 

simply 𝐸𝑡𝑟𝑎𝑖𝑛. With the remaining 20% of the dataset, we test the neural network by calculating the 

test error 𝐸𝑡𝑒𝑠𝑡(ℎ(𝑥𝑛)) or simply 𝐸𝑡𝑒𝑠𝑡. Both error computations use equation (10). In some cases, 

we also analyze the Pearson correlation coefficient between the predicted and target values (11). 

Chapter III.3.4 - Pruning the neural networks 

A central problem in data-driven learning is choosing the adequate number of neurons and 

connections, which directly influence the number of model parameters. A model with fewer 

parameters than the ideal may not make accurate predictions, while an over-parameterized model 



 

56 
 

may fit the noise in the dataset. The latter situation is also known as overfitting and its main 

consequence is the lack of model generalization, i.e. the model makes good predictions inside the 

training dataset but makes poor predictions outside of it. There are two main approaches to avoid 

overfitting. The first approach is regularization, which is a set of methods to optimize the MSE 

imposing constraints to the weight values (Abu-Mostafa et al., 2012). The second is pruning, a 

technique to remove non-useful connections (weights) or even entire neurons in the network. We 

use the optimal brain surgeon technique to prune the neural network (Hassibi and Stork, 1993). 

Figure III.6 shows the algorithm to remove connections on a network. Here, 𝐻 ≡ 𝜕2𝐸/𝜕𝑊2 is the 

hessian matrix computed in the optimum point of the training algorithm and 𝐿𝑞 =
1

2

𝑤𝑞
2

[𝐻−1]𝑞𝑞
 is the 

error increase by the removal of the weight 𝑤𝑞 (saliency). On step 4, one updates the weights using 

𝛿𝑊 = −
𝑤𝑞

[𝐻−1]𝑞𝑞
 𝐻−1 ∙ 𝑒𝑞  where 𝑒𝑞  is the unit vector in the weight space corresponding to the 

(scalar) weight 𝑤𝑞. 

 

Figure III.6 - Optimal Brain Surgeon pruning algorithm (Hassibi and Stork, 1993) 

We used the RSNNS package (Bergmeir and Benítez, 2012) with the R programming language, to 

train test, prune and analyze different ANN topologies. 

Chapter III.4 - Results and discussion 

Chapter III.4.1 - Ideal number of training samples 

The first machine learning analysis we perform is the determination of the ideal number of samples 

to generate accurate models to describe the PSA dynamics. In order to accomplish that, we 

generated 26 random subsets 𝑆(𝑙) from the dataset 𝑧𝑗, where 𝑙 = 50,100, … ,1300 is the number of 

samples inside each subset. We then applied the learning-testing procedure described above over 

each subsample to generate Figure III.7. It is possible to see a significant error reduction until 𝑆(550). 

1. Train a "reasonably large" network to minimum error. 

2. Compute H−1. 

3. Find the q that gives the smallest saliency. If this candidate 
error increase is much smaller than E, then the qth weight 

should be deleted, and we proceed to step 4; otherwise, go to 

step 5. 

4. Use the q from step 3 to update all weights. Go to step 2. 
5. No more weights can be deleted without a large increase in E. 

(At this point it may be desirable to retrain the network.) 
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On the 𝑆(600) the error slightly increases and from there on it remains relatively stable. Therefore, 

we use 𝑆(650) over the next sections. It is important to disclose that there is no guarantee that this 

subsample is stratified, i.e. it is possible that some regions are undersampled while other are 

oversampled. Section Chapter III.4.2.3 discusses the positive implications of this approach. 

 

Figure III.7 – Test error for the prediction of N2 purity (squares), N2 recovery (circles), 
CH4 purity (triangles) and CH4 recovery (crosses) as a function of the number of 

samples.  

We applied the pruning algorithm on all neural networks displayed above, beginning with 50 fully 

connected neurons in the hidden layer. This procedure not only removed connections (by zeroing 

the weights) but also removed entire neurons, rendering different incompletely connected ANN for 

each dataset and each output variable. Table III.5 presents the resulting number of neurons and 

connections for 𝑆(650). The reader can find the complete dataset and the complete weight matrixes 

in the supplementary material of this article. 

Table III.5 – Comparison between initial and pruned neural network topologies 

Number of…  N2 purity N2 recovery CH4 Purity CH4 Recovery 

training samples 520 520 520 520 
testing samples 130 130 130 130 
initial hidden units 50 50 50 50 
initial connections  650 650 650 650 
initial parameters 701 701 701 701 
final hidden units 22 14 16 14 
final connections 112 68 61 77 
final parameters 135 83 78 92 

 

Chapter III.4.2 - Out of sample error estimation 

During ANN training, 𝐸𝑡𝑟𝑎𝑖𝑛 is the approximation error of a given ANN. However, an important type 

of error is the out of sample error or generalization error 𝐸𝑜𝑢𝑡. This error measures the mean 
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quadratic difference between the predicted and the target functions over the entire domain. Since 

its exact calculation requires knowing the behavior of the target function over the whole domain, 

we here make three analysis to approximate and understand the value of 𝐸𝑜𝑢𝑡; repeated learning-

testing cross-validation (LT), bias+variance analysis (BV) and validation with the unused dataset 

(Val). 

Chapter III.4.2.1 - Repeated learning-testing cross-validation 

Another work in the literature introduced this method and analyzed its stability (Burman, 1989). We 

repeatedly split the data randomly into two parts, a learning set of size 520 and a test set of size 

130. For each split, we conduct the ANN training with the learning set. After the training, we 

calculate the MSE over the test set. Since we split the data 10 times over, the repeated learning-

testing error 𝐸𝐿𝑇 is the average over the 10 𝐸𝑡𝑒𝑠𝑡: 

𝐸𝐿𝑇 =
1

10
 ∑ {

1

130
 ∑(ℎ(𝑥𝑖) − 𝑦𝑖)2

130

𝑖=1

}

10

𝛼=1

 (12) 

Since the pruning algorithm is a part of the learning algorithm, the number of hidden units and 

connections of the ANN models may vary for each data split. This impairs our ability to analyze the 

statistics for each individual weight. However, we make several different analysis with the ANN 

predicted values to ensure the consistency and stability of this model. 

Chapter III.4.2.2 - Bias+variance decomposition 

The bias+variance decomposition of the out of sample error also depends on squared error 

measures. Let 𝐷 be the collection of dataset splits 𝐷𝑖 , 𝑖 = 1,2, … ,10. Let also 𝑔(𝐷𝑖)(𝑥) be the ANN 

model trained on a specific dataset. The out of sample error estimation can be expressed as: 

𝔼𝐷[𝐸𝑜𝑢𝑡(𝑔(𝐷))] = 𝔼𝐷 [𝔼𝑥 [(𝑔(𝐷)(𝑥) − 𝑦)
2

]] (13) 

for any 𝑥. Now, let  𝑔̅(𝑥) ≅  1/10 ∑ 𝑔(𝐷𝑖)(𝑥)10
𝑖=1  approximate the average function over all possible 

datasets. We can rewrite the right-hand side of (X) as: 

𝔼𝐷[𝐸𝑜𝑢𝑡(𝑔(𝐷))] = 𝔼𝑥 [𝔼𝐷 [(𝑔(𝐷)(𝑥) − 𝑔̅(𝑥))
2

] + (𝑔̅(𝑥) − 𝑦)2] (14) 

= 𝔼𝑥 [𝔼𝐷 [(𝑔(𝐷)(𝑥) − 𝑔̅(𝑥))
2

]] + 𝔼𝑥 [(𝑔̅(𝑥) − 𝑦)2] (15) 
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= 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑏𝑖𝑎𝑠 (16) 

Here, the bias term indicates the squared distance between the average function and the target 

function while the variance term indicates how spread are the other approximation functions from 

the average function. The reader can find the complete derivation of the bias+variance 

decomposition elsewhere in the literature (Abu-Mostafa et al., 2012). Notice that the difference 

between the repeated learning-testing error 𝐸𝐿𝑇 and the bias+variance error 𝐸𝐵𝑉 =

𝔼𝐷[𝐸𝑜𝑢𝑡(𝑔(𝐷))] is that, while the first one used only the test dataset, the second uses the whole 

dataset for each estimation. 

Chapter III.4.2.3 - Validation error 

Another way to estimate 𝐸𝑜𝑢𝑡 is by using a validation set, i.e. a dataset unused for training and 

testing. Since we first generated 1300 samples and only used 650, we calculate 𝐸𝑣𝑎𝑙  by taking the 

MSE over the unused dataset.  

Table III.6 - Summary of the out of sample error estimators for ANN regression 

 N2 purity N2 recovery CH4 Purity CH4 Recovery average 

Etrain 3.56E-05 3.32E-05 2.33E-05 2.97E-05 3.05E-05 
Etest 1.33E-04 4.10E-05 2.67E-05 4.15E-05 6.05E-05 
ELT 1.07E-04 4.67E-05 3.76E-05 7.22E-05 6.59E-05 
EBV 6.68E-05 9.08E-05 3.18E-05 2.02E-04 9.79E-05 
Eval 9.93E-05 4.72E-05 3.99E-05 5.12E-05 5.94E-05 
Bias 3.45E-05 3.59E-05 2.21E-05 6.50E-05 3.94E-05 
Variance 3.23E-05 5.49E-05 9.72E-06 1.37E-04 5.86E-05 

 

On section 4.1, we mentioned that subsampling a stratified dataset could not necessarily generate 

a stratified dataset. However, since the validation dataset is the complement of the training-testing 

dataset, undersampled regions on the former find an equivalent oversampled region in the latter 

and vice versa. Therefore, it becomes clear that the here presented validation error is a conservative 

estimation of 𝐸𝑜𝑢𝑡. Table III.6 presents a summary of each 𝐸𝑜𝑢𝑡 estimator for each output variable. 

We can argue that on average 𝐸𝐵𝑉 > 𝐸𝐿𝑇 > 𝐸𝑡𝑒𝑠𝑡 > 𝐸𝑣𝑎𝑙 > 𝐸𝑡𝑟𝑎𝑖𝑛 in the present analysis. 

Therefore, our most pessimistic 𝐸𝑜𝑢𝑡 estimator is the bias+variance decomposition. The 

bias+variance decomposition also gave us evidence that our ANN model is stable because of the 

relatively low bias and variance across the different dataset splits. We can also discuss, based on all 

estimators for 𝐸𝑜𝑢𝑡 that this value has an expected order of magnitude of −4.  
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Chapter III.4.3 - Outlier detection 

We make use of the bias+variance analysis in order to find outliers. Since 𝑔̅(𝑥) is the average 

function for any 𝑥, we assume 𝑔𝐷 to be an independent identically distributed random variable 

where mean and variance are given by: 

𝔼𝐷[𝑔𝐷(𝑥)] ≅ 𝑔̅(𝑥) (17) 

𝑠𝐷
2 [𝑔𝐷(𝑥)] ≅  𝔼𝑥 [𝔼𝐷 [(𝑔(𝐷)(𝑥) − 𝑔̅(𝑥))

2
]] (18) 

with the randomness arising from the randomness in the training dataset. We then use a student-t 

test on each 𝑧𝑗, to test the null hypothesis 𝐻0: 𝑔̅(𝑥𝑖) = 𝑦𝑖  the alternative hypothesis is 𝐻0: 𝑔̅(𝑥𝑖) ≠

 𝑦𝑖  with 99% confidence. Therefore, for each 𝑧𝑖 we test if 

𝑔̅(𝑥𝑖) − 𝑡𝛼,𝜈 ∗ 𝑠𝐷[𝑔𝐷(𝑥)] < 𝑦𝑖 < 𝑔̅(𝑥𝑖) + 𝑡𝛼,𝜈 ∗ 𝑠𝐷[𝑔𝐷(𝑥)] (19) 

where 𝛼 = 0.005, 𝜈 = ∞ ant 𝑡0.005,∞ = 2.576. Hence, the points who fail to pass this test are 

considered outliers. Table III.7 presents the number of outliers in the training-testing and validation 

datasets. There is an acceptable relative number of outliers for all output variables as they are all 

less than 10%. 

Table III.7 – Outliers in the training-testing, validation and total samples for the ANN 
regression 

  N2 purity N2 recovery CH4 Purity CH4 Recovery 

Number of training-testing sample outliers 14 19 47 0 
2.2% 2.9% 7.2% 0.0% 

Number of validation sample outliers 45 31 64 1 
6.9% 4.8% 9.8% 0.2% 

Total outliers 59 50 111 1 

4.5% 3.8% 8.5% 0.1% 

 

Chapter III.4.4 - Comparison against a linear model 

In this section, we compare the ANN surrogate model against a multivariate linear regression in 

order to analyze if a less complex model can fit the data with the same level of error. Multivariate 

linear regression is a data-driven learning technique which extends the simple linear regression 

(regression towards mediocrity) (Galton, 1886; Montgomery and Runger, 2014). 

The hypothesis set for this model is: 
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ℎ𝑙𝑖𝑛(𝑥𝑗) = ∑ 𝑤𝑖𝑥𝑗,𝑖

12

𝑖=0

= 𝑊𝑇𝑥𝑗  (20) 

We train the model using 𝑆(650) and its respective training-testing split. We use the method of least 

squares to obtain the model coefficients, which is an equivalent to performing ANN training. We 

apply the same treatment to estimate 𝐸𝑜𝑢𝑡 as the one applied to ANN on section Chapter III.4.2. 

Table III.8 presents the out of sample error estimators. It is notable that they are about 100 times 

larger than the ANN regression errors. This translates into a poor fitting as shown on the outlier 

analysis results  (Table III.9). We expected this result since PSA separation of gases is a highly 

nonlinear phenomenon. Therefore, a linear model is not suited for this application. Although simpler 

nonlinear surrogate models may exist, making an exhaustive comparison among them is out of the 

scope of this work. 

Table III.8 – Summary of the out of sample error estimators for ANN regression 

 N2 purity N2 recovery CH4 Purity CH4 Recovery Average 

Etrain 4.91E-03 1.01E-03 1.47E-03 3.89E-03 2.82E-03 
Etest 5.33E-03 1.11E-03 1.51E-03 4.02E-03 2.99E-03 
ELT 5.26E-03 1.07E-03 1.51E-03 4.07E-03 2.98E-03 
EBV 5.00E-03 1.03E-03 1.48E-03 3.92E-03 2.86E-03 
Eval 5.00E-03 1.27E-01 2.01E-01 3.94E-02 9.30E-02 
Bias 4.98E-03 1.03E-03 1.48E-03 3.90E-03 2.85E-03 
Variance 2.32E-05 7.70E-06 6.63E-06 1.64E-05 1.35E-05 

 

Table III.9 - Outliers in the training-testing, validation and total samples for the ANN 
regression 

  N2 purity N2 recovery CH4 Purity CH4 Recovery 

Number of training-testing sample outliers 579 540 586 565 
89.1% 83.1% 90.2% 86.9% 

Number of validation outliers 572 515 567 563 
88.0% 79.2% 87.2% 86.6% 

Total outliers 1151 1055 1153 1128 

88.5% 81.2% 88.7% 86.8% 

Chapter III.5 - Optimization 

The literature presents a diversity of Surrogate Based Optimization (SBO) strategies such as the basic 

unconstrained SBO, multiple surrogates SBO, approximation model management framework 

(Queipo et al., 2005) and the trust region framework (Forrester and Keane, 2009; Li et al., 2014). In 

this work, we make use the surrogate model global accuracy (SMGA) assumption (Forrester and 

Keane, 2009). The evidence we use for this assumption is the similarity among all error calculation 
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strategies, the small surrogate model variance in respect to 10 different training datasets, and the 

relatively low number of outliers.  

We then perform the One Shot SBO (Queipo et al., 2005) as described in Figure III.8. The first step 

of the One Shot SBO consists of the ANN model training and evaluation described in Section Chapter 

III.4. In order to perform the second step of the One Shot SBO, we use the optimization algorithm 

TOLMIN which employs a Sequential Quadratic Programming (SQP) method over an arbitrary 

objective function and is capable of handling linear equality and inequality constraints (Powell, 

1989) as well as box constraints. Therefore, the TOLMIN algorithm makes successive calls to the 

ANN surrogate model (objective function evaluations) to accomplish the minimization. The third 

step of the One Shot SBO (checking phase) makes a full PSA simulation using the DAE system to 

compare the target value against the ANN predicted value in the optimal condition. 

 

Figure III.8 –One Shot SBO (Queipo et al., 2005) 

In addition to the SBO, we also perform a black-box optimization in order to compare the 

performance of both methods. Across the black-box optimization steps, the TOLMIN algorithm 

makes successive calls to a black-box function providing, in each call, a proper state vector of inputs 

and fetching the objective function as well as the gradient vector. In each call to the black-box 

function a full PSA simulation using the DAE system occurs, as described in Section Chapter III.2. In 

both optimization schemes, TOLMIN estimates the gradient vector using finite differences. 

 

1. Construct a surrogate model 
from a set of known data 

points. 

 

2. Estimate the function 
minimizer using the 

surrogate function. 

 

3. Evaluate the true function 
value at the estimated 

minimum (checking phase). 
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Chapter III.5.1 - Single Objective Optimization 

Due to the nature of the adsorption process, our first analysis consists of optimizing the nitrogen 

product purity. The standard format of the optimization problem is: 

Minimize: −𝑃𝑢𝑟𝑁2
 (21.a) 

Subject to: 𝑃𝐻 − 𝑃𝑀 > 0 (21.b) 

𝑇 = 298.15 𝐾 (21.c) 

𝐿 = 2 𝑚 (21.d) 

𝐷𝑐 = 0.2 𝑚 (21.e) 

𝑦𝑁2,𝑓 = 0.85 (21.f) 

𝑙𝑏 < 𝑥𝑖 < 𝑢𝑏 (21.g) 

Where 𝑙𝑏 and 𝑢𝑏 are the lower and upper bounds for each input variable (box constraints) in Table 

III.10. In the proposed problem, both adsorption and co-current desorption pressures can lie in a 

range between 4 and 6 bar. Therefore, (21.b) keep the first one always larger than the second. 

Table III.11 summarizes the results regarding the objective function. In all table columns except 

“Step 2”, each function call corresponds to a full PSA simulation using the DAE system. For “Step 2”, 

each function call corresponds to a feed-forward ANN calculation, which is cheaper in terms of 

computational costs, and therefore, has a smaller duration. Since the optimization problem has 12 

decision variables, each function evaluation takes 1 call to the objective function plus 12 function 

calls to obtain the gradient vector. Therefore, the number of objective function evaluations is the 

number of function calls divided by 13. Our first observation is that, in the One Shot SBO, the 

checking phase optimum was close to the predicted ANN optimum with a difference of only 0.6%. 

Moreover, the SBO found a higher value of the optimum with less objective function evaluations 

than the black-box optimization. A possible explanation is the ability of a non-overfitted ANN to 

generate a smooth hypersurface in the input-output space 𝑍 = (𝑋, 𝑌) in the presence of noise 

inside the dataset (Abu-Mostafa et al., 2012), which facilitates the search for the optimum. One 

evidence to confirm this statement is that 𝑃𝑚 is closer to 𝑃ℎ and 𝑃𝑙  is at the lower bound in the 

arguments of the maxima (Table III.10) for the One Shot SBO. This is an expected observation, since 

decreasing the purging pressure leads to a cleaner bed for the better operation of the posterior 

adsorption cycle and a higher co-current blowdown pressure leads to a smaller amount of CH4 

desorbing and going to the nitrogen product stream. The black-box optimization clearly was not 
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able to reach such frontiers, which may be due to small residue oscillations close to the optimum. 

However, the relative difference between the black-box and the SBO optima was small (about 1.6%). 

Regarding the optimizer performance (Table III.11), simulating a PSA cycle comprising the 

pressurization, adsorption, co-current blowdown and counter-current blowdown takes on average 

2.5 seconds on a personal computer (Intel Core I7-2670QM microprocessor with 2.20 GHz and 8Gb 

of RAM). Since the CPU time varies for different computer configurations, we use the dimensionless 

time unit 𝑐𝑦𝑐𝑙𝑒𝑠 =
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑦𝑐𝑙𝑒 𝐶𝑃𝑈 𝑡𝑖𝑚𝑒
.   

Table III.10 – Lower & upper bounds, initial guess and arguments of the maxima in 
the black-box optimization and the One Shot SBO. 

Variables Ph (bar) Pm (bar) Pl (bar) Tad (s) Tdj (s) Tdr (s) Tco (s) Q (m3/s) 

Lower 4.00 4.00 0.10 20.0 10.0 10.0 20.0 0.0010 
Upper 6.00 6.00 0.20 60.0 50.0 50.0 30.0 0.0030 
Guess 5.20 5.00 0.15 40.0 30.0 30.0 25.0 0.0020 
black-box optim. argmax 5.42 4.31 0.12 20.0 45.1 34.3 30.0 0.0017 
One Shot SBO argmax 5.58 5.51 0.10 20.0 50.0 50.0 30.0 0.0010 

 

The black-box optimization took 22620 cycles (15.7 hours) while the Step 2 of the One Shot SBO (the 

core of the optimization procedure) took 0.02 cycles (about 50 milliseconds). However, it took 26000 

cycles (18 hours) to generate the 1300 samples (Step 1), and the ANN checking phase (Step 3) takes 

another 20 cycles (50 seconds). Therefore, the SBO lasts 15% longer than the complete One Shot 

SBO formulation. However, once Step 1 is done, it is possible to perform numerous SBO procedures 

at the time cost of 20 cycles per optimization, or even 0.02 cycles if one trusts the model enough to 

dismiss the checking phase. This approach also opens possibilities to implement real-time simulation 

and optimization of processes like ANN nonlinear model predictive control (NMPC) for the PSA 

process. 

Table III.11 – Optimization results and performance. The function calls takes into 
account both the objective function evaluation and gradient vector generation. 

 black-box optim. One Shot SBO 

  Step 1 Step 2 Step 3 

Optimum N2 purity (mole/mole) 0.9768 - 0.9891 0.9951 

Number of function calls 1131 1300 403 1 

Duration (cycles) 22620 26000 0.02 20 
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Chapter III.5.2 - Multi-objective optimization 

Maximizing N2 purity leads to a very poor nitrogen recovery. Conversely, maximizing N2 recovery 

leads to a very poor N2 purity. We then perform a bi-objective optimization in order to understand 

the tradeoff between both variables. The standard form of the optimization problem is now: 

Minimize: − (𝛼 𝑃𝑢𝑟𝑁2
+ (1 − 𝛼) 𝑅𝑒𝑐𝑁2

)     𝛼 ∈  [0,1] (22.a) 

Subject to: 𝑃𝐻 − 𝑃𝑀 > 0 (22.b) 

𝑇 = 298.15 𝐾 (22.c) 

𝐿 = 2 𝑚 (22.d) 

𝐷𝑐 = 0.2 𝑚 (22.e) 

𝑦𝑁2,𝑓 = 0.85 (22.f) 

𝑙𝑏 < 𝑋𝑖
′ < 𝑢𝑏 (22.g) 

 

We conduct the multi-objective optimization using the One Shot SBO described in the previous 

section. Figure III.9 shows the optima estimated by the ANN surrogate models (Step 2) as well as 

their respective checking phase values (Step 3). We can state that the ANN slightly underestimates 

the nitrogen purity and slightly overestimates nitrogen recovery. Over the 100 evaluated points 

composing the Pareto front, we observed a maximum relative difference between the estimated 

(Step 2) and target (Step 3) value of 1.4% for N2 purity and 4% for N2 recovery. This indicates that 

the One Shot SBO is also a proper technique for multi-objective optimization. Table III.12 shows five 

selected optimal points of the multi-objective optimization. Therefore, we argue that all of the 8 

independent variables have an influence on the search for the optima. 

 

 

Table III.12 – Five selected optimal points of the multi-objective optimization 

α Ph Pm Pl Tad Tdj Tdr  Tco  Q  N2 pur. N2 rec.  CH4 pur. CH4 rec. 

0 6.00 4.00 0.15 60.00 10.00 29.94 25.00 0.0030 0.9078 0.7570 0.3256 0.6914 
0.01 6.00 4.00 0.10 60.00 10.00 48.25 20.00 0.0030 0.9181 0.7570 0.3299 0.7136 
0.82 6.00 4.00 0.10 46.82 17.59 43.56 20.00 0.0022 0.9515 0.6695 0.2934 0.8339 
0.99 5.80 5.73 0.10 20.00 50.00 50.00 30.00 0.0010 0.9891 0.2148 0.1809 0.9865 
1.00 5.58 5.50 0.10 20.00 50.00 50.00 30.00 0.0010 0.9892 0.2111 0.1800 0.9867 
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Figure III.9 – Tradeoff curve between nitrogen purity and nitrogen recovery 
maximization. The values predicted by the ANN models are in blue and the DAE check 

of the objective function is in orange. 

Figure III.10 shows how each of the fixed variables (temperature, length diameter and inlet mole 

fraction) influence the optimization curve. Temperature has the smallest influence in the maximum 

nitrogen purity and maximum nitrogen recovery while inlet N2 mole fraction has the greatest 

influence on the overall shape and position of the Pareto front. In all four cases, although the 

process can reach near 100% N2 purity, there seems to exist an upper limit to N2 recovery of around 

90%. 

Regarding performance, we made 100 One Shot SBO procedures to generate Figure III.9, which took 

1.4 computational hours. Generating Figure III.10, took 400 One Shot SBO procedures, but this time 

we disregarded the checking phase (Step 3), taking about 20 computational seconds to accomplish. 

This is a proper approach, since we are interested in describing the qualitative behavior of the four 

values fixed by optimization constraints. 
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Figure III.10 – Influence of each fixed variable in the multi-objective optimization 

Chapter III.6- Conclusion 

This work demonstrates the advantage of using artificial neural networks surrogate models to 

analyze the PSA separation of N2/CH4 mixtures using silicalite. Neural networks presented an out of 

sample error estimation about 100 times lower than linear regression. Moreover, pruning the ANN 

decreased the model complexity, avoiding overfitting problems. We demonstrated that optimizing 

the differential algebraic system of equations takes up to 15.7 hours on a desktop PC (Intel Core I7-

2670QM microprocessor with 2.20 GHz and 8Gb of RAM). Black-box optimization with neural 

network models resulted in an optimization time of 50 seconds considering the checking phase (One 

Shot SBO Step 3) and 50 milliseconds disregarding it. This method was also able to find a higher 

confirmed nitrogen purity than black-box optimization on single objective optimization, around 

99.5%. Multi-objective optimization showed a performance cap to nitrogen recovery at about 90%. 

Among the fixed design variables, temperature was the only variable to show small influence on the 

overall process performance. The approach described in this work can be both a process simulator 

and a process optimization scheme. Although we chose to fix four decision variables in this problem, 

one can fix any desired amount of process variables in the optimization procedure, depending on 

the intended analysis. 
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Chapter III.7 - Appendix A: Complete list of equations 

Component mass balance (A1), total mass balance (A2), ideal gas law (A3), energy balance (A4), 

LDF mass transfer (A5), Ergum equation (A6), Langmuir equation (A7) and Langmuir isotherm 

temperature dependence (A8). 
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Boundary conditions. 

Adsorption 
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𝜕𝑦𝑖

𝜕𝑍
|

𝑍=0
 = 0 

(A15) 

𝜕𝑦𝑖

𝜕𝑍
|

𝑍=𝐿
= 0 

(A16) 

𝜕𝑇

𝜕𝑧
|

𝑍=0
 =  0 

(A17) 

𝜕𝑇

𝜕𝑍
|

𝑍=𝐿
= 0 

(A18) 

𝜕𝑃

𝜕𝑍
|

𝑍=0
= 0 

(A19) 
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𝜈|𝑍=0 = 0 (A20) 

Pressurization: 

𝐷𝑎𝑥

𝜕𝑦𝑖

𝜕𝑍
|

𝑍=0
 = −𝜈|𝑧=0(𝑦𝑖,𝑓𝑒𝑒𝑑 − 𝑦𝑖|𝑧=0 ) 

(A21) 

𝜕𝑦𝑖

𝜕𝑍
|

𝑍=𝐿
= 0 

(A22) 

𝐾𝑎𝑥

𝜕𝑇

𝜕𝑍
|

𝑍=0
 =  −𝜀𝜈|𝑍=0𝜌𝑔𝐶𝑝,𝑔(𝑇𝑓𝑒𝑒𝑑 − 𝑇|𝑧=0) 

(A23) 

𝜕𝑇

𝜕𝑍
|

𝑍=𝐿
= 0 

(A24) 

𝜈|𝑧=0 = 𝑓(𝑃|𝑍=0 ) (A25) 

𝜈|𝑍=𝐿 = 0 (A26) 

Dimensionless equations: 

−
1

𝑃𝑒

𝜕

𝜕𝑧
 (

𝑃

𝑇

𝜕𝑦𝑖

𝜕𝑧
) +

𝜕

𝜕𝑧
(

𝑃

𝑇
 𝑦𝑖𝑣) + 

𝑃

𝑇

𝜕𝑦𝑖

𝜕𝜏
+

1

𝑇
 𝑦𝑖

𝜕𝑃

𝜕𝜏
−  

𝑃

𝑇
2

𝜕𝑇

𝜕𝜏
+ ψ

∂xi

𝜕𝜏
= 0 (A27) 

𝜕

𝜕𝑧
 (

𝑃

𝑇
 𝑣) + 𝜓 ∑

𝜕𝑥𝑖

𝜕𝜏

𝑛𝑐𝑜𝑚𝑝

𝑖=1

− 
𝑃

𝑇
2

𝜕𝑇

𝜕𝜏
+

1

𝑇

𝜕𝑃

𝜕𝜏
= 0 (A28) 

−Ω1

𝜕2𝑇

𝜕𝑧2 + Ω2

𝜕

𝜕𝑧
(𝑧 𝑃) + Ω3 𝑇  ∑

𝜕𝑥𝑖

𝜕𝜏

𝑛𝑐𝑜𝑚𝑝

𝑖=1

− ∑ (𝜎𝑖

𝜕𝑥𝑖

𝜕𝜏
)

𝑛𝑐𝑜𝑚𝑝

𝑖=1

+ Ω4(𝑇 − 𝑇𝑤) + Ω2

𝜕𝑃

𝜕𝜏

+
𝜕𝑇

𝜕𝜏
= 0 

(A29) 

𝜕𝑥𝑖

𝜕𝜏
= 𝛼𝑖(𝑥𝑖

∗ − 𝑥𝑖) (A30) 
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−
𝜕𝑃

𝜕𝑧
=

150

4

1

𝑟𝑝
2  (

1 − 𝜀

𝜀
)

2 𝑣0𝐿

𝑃0
 𝜇𝑣 

(A31) 

 

Dimensionless variables: 

𝑃 =
𝑃

𝑃0
 𝑇 =

𝑇

𝑇0
 𝑇𝑤 =

𝑇𝑤

𝑇0
 𝑥𝑖 =

𝑞𝑖

𝑞𝑠,0
 𝑣 =

𝑣

𝑣0
 𝑧 =

𝑍

𝐿
 𝜏 =

𝑡𝑣0

𝐿
 𝛼𝑖 =

𝑘𝑖𝐿

𝑣0
 

 

Dimensionless groups 

𝑃𝑒 =
𝑣0𝐿

𝐷𝑎𝑥
 (A32) 

𝜓 =
𝑅𝑇0𝑞𝑠,0

𝑃ℎ

(1 − 𝜀)

𝜀
 (A33) 

Ω1 =

𝐾𝑎𝑥
𝑣0𝜀𝐿

(1 − 𝜀)
𝜀

 (𝜌𝑠𝐶𝑝𝑠 + 𝑞𝑠,0𝐶𝑝𝑎 ∑ 𝑥𝑖
𝑛𝑐𝑜𝑚𝑝

𝑖=0
)

 (A34) 

Ω2 =

𝐶𝑝𝑔

𝑅
𝑃0
𝑇0

(1 − 𝜀)
𝜀

 (𝜌𝑠𝐶𝑝𝑠 + 𝑞𝑠,0𝐶𝑝𝑎 ∑ 𝑥𝑖
𝑛𝑐𝑜𝑚𝑝

𝑖=0
)
 (A35) 

Ω3 =
𝐶𝑝𝑎𝑞𝑠,0

 (𝜌𝑠𝐶𝑝𝑠 + 𝑞𝑠,0𝐶𝑝𝑎 ∑ 𝑥𝑖
𝑛𝑐𝑜𝑚𝑝

𝑖=0
)

 (A36) 

Ω4 =

2ℎ𝑖𝑛
𝑟𝑖𝑛

𝐿
𝑣0

(1 − 𝜀)
𝜀

 (𝜌𝑠𝐶𝑝𝑠 + 𝑞𝑠,0𝐶𝑝𝑎 ∑ 𝑥𝑖
𝑛𝑐𝑜𝑚𝑝

𝑖=0
)
 (A37) 

𝜎𝑖 =

𝑞𝑠,0

𝑇0
 (−Δ𝐻𝑖)

 (𝜌𝑠𝐶𝑝𝑠 + 𝑞𝑠,0𝐶𝑝𝑎 ∑ 𝑥𝑖
𝑛𝑐𝑜𝑚𝑝

𝑖=0
)

 (A38) 

 

Finite Volumes discretization (Haghpanah et al., 2013) 

Notice that the 𝑗 subscript considers values evaluated inside the finite volume while the 𝑗 + 0.5 

subscript considers values evaluated in the interface. 
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1

𝑃𝑒

1

∆𝑧
(

𝑃̅

𝑇̅
|
𝑗+0,5

 
𝑦𝑖,𝑗+1 − 𝑦𝑖,𝑗

∆𝑧
−

𝑃̅

𝑇̅
|
𝑗−0,5

𝑦𝑖,𝑗 − 𝑦𝑖,𝑗−1

∆𝑧
) −

1

∆𝑧
(

𝑦𝑖𝑃̅

𝑇̅
𝜈̅|

𝑗+0,5

−
𝑦𝑖𝑃̅

𝑇̅
𝜈̅|

𝑗−0,5

)

− 𝜓
𝜕𝑥𝑖,𝑗

𝜕𝜏
−

𝑦𝑖,𝑗

𝑇̅𝑗

𝜕𝑃̅𝑗

𝜕𝜏
+

𝑃̅𝑗𝑦𝑖,𝑗

𝑇̅𝑗
2

𝜕𝑇̅𝑗

𝜕𝜏
−  

𝑃̅𝑗

𝑇̅𝑗

𝜕𝑦𝑖,𝑗

𝜕𝜏
= 0 

(A39) 

−
1

∆𝑧
(

𝑃̅

𝑇̅
𝜈̅|

𝑗+0,5

−
𝑃̅

𝑇̅
𝜈̅|

𝑗−0,5

) − 𝜓 ∑ (
𝜕𝑥𝑖,𝑗

𝜕𝜏
)

𝑛𝑐𝑜𝑚𝑝

𝑖=1

+
𝑃̅𝑗

𝑇̅𝑗
2

𝜕𝑇̅𝑗

𝜕𝜏
−

1

𝑇̅𝑗

𝜕𝑃̅𝑗

𝜕𝜏
= 0 (A40) 

𝛺1,𝑗

1

∆𝑧
(

𝑇̅𝑗+1 − 𝑇̅𝑗

∆𝑧
−

𝑇̅𝑗 − 𝑇̅𝑗−1

∆𝑧
) − 𝛺2,𝑗

1

∆𝑧
(𝜈̅𝑃̅|𝑗+0,5 − 𝜈̅𝑃̅|𝑗−0,5) − 𝛺3,𝑗𝑇̅𝑗 ∑

𝜕𝑥𝑖,𝑗

𝜕𝜏

𝑛𝑐𝑜𝑚𝑝

𝑖=1

+ ∑ (𝜎𝑖,𝑗

𝜕𝑥𝑖,𝑗

𝜕𝜏 

𝑛𝑐𝑜𝑚𝑝

𝑖=1

) − 𝛺4,𝑗(𝑇̅𝑗 − 𝑇̅𝑊,𝑗) − 𝛺2,𝑗

𝜕𝑃̅𝑗

𝜕𝜏
−

𝜕𝑇̅𝑗

𝜕𝜏
= 0 

(A41) 

𝜕𝑥𝑖,𝑗

𝜕𝑡
= 𝑘𝑖(𝑥𝑖,𝑗

∗ − 𝑥𝑖,𝑗) (A42) 

𝜈̅𝑗+0,5 = −
1

∆𝑧

4

150
(

𝜀

1 − 𝜀
)

2

𝑟𝑝
2

𝑃0

µ𝜈0𝐿
(𝑃̅𝑗+1 − 𝑃̅𝑗) (A43) 

WENO FVM (Haghpanah et al. 2013) 

𝑓𝑗+0,5 =
𝛼0,𝑗

𝛼0,𝑗 + 𝛼1,𝑗
[
1

2
(𝑓𝑗 + 𝑓𝑗+1)] +

𝛼1,𝑗

𝛼0,𝑗 + 𝛼1,𝑗
[
3

2
𝑓𝑗 −

1

2
𝑓𝑗−1] (A44) 

𝛼0,𝑗 =

2
3

(𝑓𝑗+1 − 𝑓𝑗 + 𝛿)
4             𝛼1,𝑗 =

1
3

(𝑓𝑗 − 𝑓𝑗−1 + 𝛿)
4  (A45) 

Chapter III.8 - Appendix B: Phenomenological coefficient calculations 

LDF kinetic constant 

1

𝑘𝑖
=

𝑟𝑝𝑞𝑖,𝑓

3𝑘𝐹𝑃𝑦𝑖,𝑓
+

𝑟𝑝
2𝜌𝑝𝑞𝑖,𝑓𝜏′

8𝜀𝑝𝐷𝑁2,𝐶𝐻4
𝑃𝑦𝑖,𝑓

+
𝑟𝑐

2

15𝐷𝑐
 

(B1) 

𝑘𝐹 =
𝑣

𝑆𝑐
2
3

(
0.765

(𝑅𝑒ε)0.82 +
0.365

(𝑅𝑒ε)0.386) 
(B2) 

Axial dispersion 
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𝐷𝑎𝑥 =
𝐷𝑁2,𝐶𝐻4

𝜀
 (0.26 + 0.5𝑆𝑐𝑅𝑒) 

(B3) 

Thermal axial dispersion 

𝐾𝑎𝑥 = 𝑘𝑔(10 + 0.5𝑅𝑒𝑃𝑟) (B4) 

Dimensionless groups 

𝑅𝑒 =
𝐷𝑣𝜌

𝜇
  𝑆𝑐 =

𝜇

𝜌𝐷
  𝑃𝑟 =

𝐶𝑝𝜇

𝑘𝑔
 

Chapter III.9 Addendum 

[1] For the purposes of training, pruning and error analysis, we used the R package with the 

RSNNS neural networks library. However, for optimization purposes, we implemented a feed 

forward neural network calculations frim scratch in Fortran 90 language. 
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Chapter IV – General Conclusions and Suggestions for 

Future Work 

Chapter IV.1- General Conclusions   

The first part of this work showed that the chosen set of equations, as well as the numerical 

methods, were able to describe properly the experimental breakthrough curve. This article also 

showed that the optimization of the process pressures alone were able to give a maximum nitrogen 

purity of 96.6% from an inlet current with 15% methane. This was an indication that other process 

variables should also be regarded in the optimization process. However, optimizing the DAE model 

is a computationally intensive task, inspiring us to come up with the ANN surrogate model. In the 

second work, we showed that directly optimizing the DAE model took about 15 hours, an 

undesirable amount of time for process design purposes. With the aid of an ANN surrogate model 

we were able to perform an optimization procedure in less than a second if the checking phase is 

disregarded and about fifty seconds otherwise. As compared to the optimization procedure in the 

first article, we were able to find a maximum nitrogen purity of 99.5%. Therefore, we conclude that 

a PSA with methane selective adsorbent is able to purify the waste nitrogen stream from a cryogenic 

distillation unit. 

Chapter IV.2 - Suggestion for future work 

For future work, we recommend the following analysis. 

 Comparative study of various numerical methods, including Central Differentiation Schemes 

(CDS), higher order finite differences and UDS with more finite volumes. 

 Make rigorous mesh convergence analysis, including mesh Courent and Péclet numbers. 

 Behavior of the reduced order model in the presence of noise and uncertainty. 

 ANN training using experimental pilot/actual plant data. 

 Recurrent neural networks to model the adsorption/desorption dynamics. 

 Development of a general purpose ANN in order to take into account material properties. 

 Testing and screening with multiple adsorbents. 

 Integration between the reduced order model and process simulator. 

 Testing combined adsorption, membrane and distillation processes. 


