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Abstract

Asphaltenes are a relevant fraction of crude oil to the oil industry since they can precipi-
tate during the oil processing. Hence, we, at this dissertation, studied the solvation free
energies of molecules mimicking asphaltenes in different solvents with a coarse-grained
model known as SAFT-γ Mie force field. We obtained solvation free energies by carrying
out molecular dynamics simulations using the expanded ensemble method. The output
of these simulations was then used to estimate the solvation free energies. For this,
we employed the MBAR method. The results with solvents other than water had low
absolute deviations from experimental data. In turn, hydration free energy calculations
required a binary interaction parameter estimated with output data from molecular
dynamics in order to obtain accurate free energy differences. These results indicated
problems on the description of the water molecule by the SAFT-γ Mie force field, but,
generally, proved that this coarse-grained model could represent the solvation free
energies of the studied solute-solvent pairs.

Keywords: Solvation free energy. Asphaltenes. SAFT-γ Mie force field.



Resumo

Os asfaltenos são uma fração relevante do petróleo, uma vez que podem precipitar
durante o processamento e aumentar consideravelmente o custo de produção. Sendo
assim, nesta dissertação, estudamos as energias livres de solvatação de moléculas do
tipo asfaltenos em diferentes solventes com o campo de força coarse-grained SAFT-
γ Mie. Obtivemos energias livres de solvatação realizando simulações de dinâmica
molecular com o método ensemble expandido. Os resultados dessas simulações foram
então usados para estimar as energias livres de solvatação com o método MBAR. As
energias livres de solvatação em solventes não aquosos apresentaram baixos desvios
absolutos em relação aos dados experimentais. Por sua vez, os cálculos de energia
livre de hidratação exigiram um parâmetro de interação binária estimado com dados
obtidos com dinâmica molecular. Estes resultados indicaram problemas na descrição da
molécula de água pelo campo de força SAFT-γ Mie, mas, em geral, provaram que este
modelo coarse-grained consegue representar as energias livres de solvatação dos pares
de solutos-solventes estudados.

Palavras-chave: Energia livre de solvatação. Asfaltenos. Campo de força SAFT-γ Mie.
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1 Introduction

Solvation free energy calculations with molecular dynamics (MD) have a variety
of applications ranging from drug design in the pharmaceutical industry to the develop-
ment of separation technologies in the chemical industry. Solvation free energy is, more
specifically, the difference in free energy related to the process of transferring a solute
from an ideal gas phase into a liquid solution (SHIRTS et al., 2003). Through the study
of the solvation phenomenon, it is possible to obtain information about the behavior
of the solvent in different thermodynamic conditions and the influence of the solute’s
molecular geometry. It is also possible to calculate other important properties with the
solvation free energy, namely the activity coefficient at infinite dilution, Henry constant,
and partition coefficients. Additionally, solvation free energy calculations can be part of
the methodology of calculating solubility from molecular dynamics.

The solvation free energy calculations described above are intrinsically complex
due to the many competing forces interfering in the behavior of the solute-solvent
interaction. Also, free energy simulations are susceptible to sampling problems in low
energy regions, and simulation results need to be correctly post-processed in order to
yield free energy differences with small uncertainties. Another influencing factor in the
output of these calculations is the choice of force field used to model the solvent and
solute molecules. Force field is the name given to the group of parameters and equations
used to represent the potential energy function of a system in molecular simulations.
They have different levels of description, such as quantum mechanics, atomistic, and
coarse-grained. The quantum mechanics approach describes the motion of electrons
and requires for the solution of the Schrödinger equation during the simulation. In
the atomistic description, only the atomic motions are represented, and this is done by
solving Newton’s equations of motion. Finally, in the coarse-grained description, atoms
are grouped into pseudo-atoms or beads, and the equations of motion are solved for
them.

These coarse-grained models are generally able to reproduce experimental free
energy differences since the effects of reducing degrees of freedom in the entropy are
counterbalanced by the reduction of enthalpic terms (KMIECIK et al., 2016). This fact
makes these models a viable option to decrease the computational time of solvation free
energy calculations. Additionally, deficiencies in the description of small molecules by
coarse-grained models can be revealed by free energy calculations (MOBLEY et al., 2007;
SHIRTS et al., 2003). Hence, we, in this study, assess the performance and shortcomings
of the SAFT-γ Mie coarse-grained force field (AVENDAÑO et al., 2011) with free energy
calculations of a variety of solute-solvent pairs. We choose this coarse-grained force
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field because it uses, unlike the majority of the force fields, the Mie potential (MIE, 1903)
and because its method of obtaining parameters is more straightforward than those
of other coarse-grained models. It was initially parameterized with pure component
equilibrium and interfacial tension data (AVENDAÑO et al., 2011), and this strategy
has provided satisfactory results. Examples include the prediction of phase equilibrium
of aromatic compounds (MÜLLER; MEJÍA, 2017), alkanes, light gases (HERDES et
al., 2015), and water (LOBANOVA et al., 2015), thermodynamic properties of carbon
dioxide and methane (AIMOLI et al., 2014a), multiphase equilibrium of mixtures of
water, carbon dioxide, and n-alkanes (LOBANOVA et al., 2016), and water/oil interfacial
tension (HERDES et al., 2017).

We selected the solvents and solutes in our free energy calculations with the
intention of testing the force field with standard sets used as a benchmark in solvation
free energy calculations and with polycyclic aromatic substances used as models to
asphaltenes. Asphaltenes are complicated to characterize by determining their composi-
tion on a molecular basis, but the literature broadly accepts that they can be described
as a fraction of crude oil soluble in toluene and insoluble in n-alkanes (pentane, hexane,
heptane) (SJÖBLOM et al., 2003). They have motivated many studies with interest in
developing models for their structure and behavior due to all the problems they can
cause during their transportation and refining such as precipitation during the oil pro-
cessing (SJÖBLOM et al., 2015). This precipitation issue is a recurrent problem due to
the growing market of the production of crude oil in deep waters, whose conditions
are favorable to precipitation (BUENROSTRO-GONZALEZ et al., 2004). As an example,
asphaltene precipitation due to pressure drop can clog oil production equipment and
cause a growth in the cost of production (JOSHI et al., 2001). All these factors make
the understanding of the behavior of asphaltenes in different chemical and physical
environments relevant to the oil industry.

As said in the previous paragraph, asphaltene characterization still faces some
issues. Hence, we choose to use polycyclic aromatic hydrocarbons (PAHs), which have
well-defined characteristics, to initially test the efficiency of the SAFT-γ Mie force field
in describing the solvation phenomenon. PAHs are a group of organic compounds
that have fused rings, carbon and hydrogen in their structure (RAVINDRA et al., 2008),
which is a characteristic shared with asphaltenes. The ones utilized in this work were
phenanthrene, anthracene, and pyrene since they share similarities with asphaltenes
regarding their solubility. In this context, we selected compounds that are used to
characterize asphaltenes (toluene, hexane) as solvents in our free energy calculations.
We also tested the anti-solvent/solvent effect of carbon dioxide due to its influence in
asphaltene precipitation during the oil processing (SOROUSH et al., 2014). Hence, the
success of the description of solvation free energies of small asphaltene-like compounds
by this force field can then open up the possibility of obtaining satisfactory results for
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more complex asphaltene models with a force field with a low computational cost.

1.1 Objectives

The general objective of this work is to acquire reasonable estimates of solvation
free energies of PAHs, which can represent asphaltenes, using molecular dynamics
simulations with the SAFT-γ Mie force field. By doing that, we intend to provide
information about the solvation phenomenon of an important compound for the oil
industry.

The specific objectives are to :

• Estimate the parameters of the SAFT-γ Mie force field for phenanthrene using
two available strategies for the parameterization of aromatic molecules with
this force field.

• Estimate the binary interaction parameter required by the SAFT-γ Mie force
field for aqueous mixtures.

• Optimize the parameters necessary to carry out expanded ensemble simula-
tions.

• Carry out expanded ensemble simulations to obtain the potential energies.

• Estimate solvation free energies with the Multistate Bennett Acceptance Ratio
(MBAR) method using the potential energies obtained with molecular dynamics
simulations.

• Calculate the partition coefficients for some systems studied here using the
estimated solvation free energies.



2 Literature Review

2.1 Molecular Simulations of Asphaltene-Like Molecules

Asphaltenes, unlike other petroleum fractions, are not defined on a molecular
basis. The most accepted definition is that they are a fraction of crude oil insoluble in
n-alkanes (pentane, hexane, and heptane) and soluble in toluene (SJÖBLOM et al., 2003).
Due to uncertainties related to their structures, much work has been done to develop
model compounds that have a well-defined structure and can represent asphaltenes. The
two categories of models presented in the literature are the archipelago and continental
models. In the archipelago model, asphaltenes consist of polyaromatic parts linked
together by aliphatic or naphthenic moieties and, in the continental model, they consist
of a single polyaromatic ring with linked aliphatic or naphthenic chains (MULLINS,
2010; MURGICH, 2003). The choice of the model’s structure is highly essential since
some structures/arrangements can cause the occurrence of high-energy regions during
the simulation (LI; GREENFIELD, 2011) .

In order to evaluate the strengths and shortcomings of asphaltene models, articles
have been published about the calculations of their properties. There is an agreement in
studies of these models with molecular simulation, such as the influence of the model
in the packing tendency of the molecule (GREENFIELD, 2011). Kuznicki et al. (2009)
utilized molecular dynamics in the study of the nanoaggregation of four types of model
asphaltene molecules (continental, Violanthrone-79, anionic continental, and thiophenic
anionic continental) in binary mixtures of toluene and water. The authors observed that,
in thin films of toluene trapped between two aqueous phases, both interface-bound and
core-bound asphaltenes have similar diffusion behavior. Headen et al. (2017) reported
molecular dynamics simulations of four model asphaltenes, including archipelago and
continental model. They alleged that there is no formation of nanoaggregates and that
the distribution of asphaltene clusters is continuous for mixtures of asphaltenes in
heptane.

Molecular dynamics simulations were also utilized in the study of Ervik et al.
(2016a) to obtain the correct interfacial orientation of asphaltenes using a coarse-grained
model of the interface and the asphaltene molecules. Also using a coarse-grained force
field, Jover et al. (2015) carried out molecular simulations with a continental asphal-
tene model. The results reproduced experimental data of aggregation of asphaltene
molecules in n-heptane and solubility in toluene. Gao et al. (2014) performed a molecular
dynamics study with the GROMOS 45a3 force field (SCHULER et al., 2001) to identify
the influence of the structural characteristics of different asphaltene molecules.
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Mikami et al. (2013) employed the archipelago model in their work to investigate
the interfacial behavior of asphaltene molecules at the oil-water interface using molecu-
lar dynamics simulations with the OPLS-AA force field (JORGENSEN; TIRADO-RIVES,
1988). They found that asphaltenes are preferably distributed in the oil phase in the
case of pure toluene and at the oil-water interface in the case of pure heptane. They also
discovered an oscillatory behavior of asphaltene molecules at the oil-water interface
when using the archipelago model. Teklebrhan et al. (2014) used a perylene-based model
to study molecular association and interaction as well as the adsorption properties of
the perylene molecule at the water/toluene or water/heptane interface.

2.2 Coarse-Grained (CG) Force Fields

Molecular simulations, as those described in the previous section, can be carried
out at different levels of description. The detailed atomistic level or ab initio level is
described by the laws of quantum mechanics. The system consists of a set of subatomic
particles in which the Schrödinger’s equation is solved for all of them. The next level is
the atomistic description. In this description, the equations of classical mechanics are
solved for the atoms in the system. Force fields at this level are based on van der Waals
interactions, which may include neutral or Coulombic charged sites. The polarizability
effect may also be accounted by some force fields. Contributions due to intramolecular
interactions such as bond-stretching, angle-bending, and torsion are also considered
in these kinds of force fields. When the simulation scale needs to be increased, and
the atomistic simulations become too computationally expensive such as in the study
of biological systems, the coarse-grained (CG) description can be an alternative to
decrease the computational cost. This description considers that the system is made up
of pseudo-atoms or beads representing multiple atoms or even an entire molecule.

There is an evident loss of information in grouping atoms; hence it is necessary
to guarantee that the process of eliminating unnecessary or unimportant information
(’coarse-graining’) does not affect the system’s physical behavior. Ideally, coarse-grained
models need to have representability, robustness, transferability, and computational
efficiency. Representability means that we can use a model at a state point other than
the one in which it was parameterized. The other characteristic, robustness, is related to
the model’s ability to enable reliable predictions for various structural, thermodynamic,
or transport properties. Finally, a transferable model is one in which the representation
of atomic or chemical moieties have the same behavior in different molecules- e. g., a
pseudo-atom representing CH2 should have the same characteristics both in an alkene
molecule and in a polyethylene molecule (MÜLLER; JACKSON, 2014). To achieve the
cited goals, coarse-grained force fields are usually developed by mapping the atomistic
model to define the pseudo-atoms, which are generally formed by similar functional
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groups.

The level of coarse-graining also needs to be established. The decision of the
number of atoms per bead should be careful. There is a compromise between accu-
racy and computational efficiency since the simulations become faster when we group
more atoms per bead, but the results can lose accuracy. After the mapping, CG force
fields need to be parametrized. There are two different approaches, bottom-up and
top-down, to link the simulations on the coarse-grained scale to another scale, schemati-
cally represented in Figure 2.2.1. The bottom-up approach uses information of a more
detailed scale such as the quantum mechanics description or the atomistic description
to obtain information necessary to the parametrization. This method highly depends
on the quality of the more detailed model to succeed. In the top-down methodology,
one obtains parameters from larger scales, namely experimental thermodynamic or
transport properties.

Figure 2.2.1 – Schematic representation of the two approaches of coarse-graining.

One of the first applications of coarse-grained models was in the study of protein
folding (LEVITT; WARSHEL, 1975; LEVITT, 1976). These earlier protein CG models
were based on known molecular structure, and they did not represent the proper-
ties of proteins correctly, but they gave an initial contribution to the knowledge of
physicochemical forces associated with protein folding and protein interactions (KOGA;
TAKADA, 2001). More recently, models were developed focusing on retaining the pro-
tein’s chemical specificity. The Bereau and Deresno model (BEREAU; DESERNO, 2009)
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represents a single amino acid residue with a maximum of four beads, and it was used
in studies of protein folding and aggregation. However, this model still needs tuning
to improve protein stability (BEREAU et al., 2010). The OPEP (Optimized Potential for
Efficient Protein Structure Prediction) model (STERPONE et al., 2014; STERPONE et
al., 2015) represents a single amino acid with a maximum of six beads. It was used to
investigate a variety of phenomena, ranging from protein folding to the modeling of
DNA-RNA complexes (BARDUCCI et al., 2011; CHEBARO et al., 2009; STERPONE et
al., 2014). Other CG protein models used in the literature are the SCORPION (solvated
coarse-grained protein interaction) (BASDEVANT et al., 2013), the UNRES (United
Residue) (ADAM et al., 2014) and the MARTINI model (LARS et al., 2013). The latter
one is the most popular model for CG modeling of membrane proteins (MARRINK;
TIELEMAN, 2013). Although these models are widely used, the existing coarse-grained
force fields utilized to model proteins still need improvement, since the efficient use
of coarse-grained models for proteins usually requires rigorous reconstruction of the
atom-level representation, and this has only been possible for some moderate resolution
coarse-grained models (KMIECIK et al., 2016).

The MARTINI force field is also extensively used as a CG model for water.
This force field represents four water molecules as one bead using a shifted Lennard-
Jones potential. Despite its extensive use, the MARTINI water model does not correctly
reproduce properties such as interfacial tension and compressibility (HE et al., 2010).
Besides, it can freeze at room temperature (WINGER et al., 2009; MARRINK et al., 2007),
which requires the use of anti-freezing agents during the simulations. This behavior can
be explained by the high level of coarse-graining (4:1), the lack of explicit charges, and
the use of a 12-6 potential. Shinoda et al. (2007) used different forms of the Mie potential
to build a versatile and transferable coarse-grained model for surfactant/water systems
using density, interfacial tension, and hydration free energies (solvation free energies
in water) data. In this model, three water molecules are represented by one pseudo-
atom, and the water cross interactions are represented by a 12-4 Mie potential, and the
surfactant (alkanes, oxyethylenes, ethylene glycols, ethers, and alcohols) interactions are
represented by a 9-6 Mie potential. Chiu et al. (2010) used another type of intermolecular
potential, the Morse Potential, which is softer than the LJ potential, to improve the
MARTINI model.

Outside of the MARTINI framework, He et al. (2010) studied different levels of
coarse-graining for water ranging from one to four molecules per bead using differ-
ent Mie and Morse potentials. Other investigations also assessed the use of soft-core
potentials to study aqueous solutions of surfactants (SHINODA et al., 2007), as well
as ionic liquids (BHARGAVA; KLEIN, 2009), lipids (SHINODA et al., 2010), and mem-
branes (PANTANO; KLEIN, 2009). Riniker and Gunsteren (2011) also developed a
coarse-grained water model for the GROMOS force field using a systematic analysis of
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different properties of small water clusters. According to their analysis, the best repre-
sentation of water is achieved when one bead represents five water molecules. In this
model, the potential energy is calculated using the Lennard-Jones potential, and electro-
static interactions are explicitly considered. Orsi and Essex (2011) proposed the ELBA
coarse-grained model for molecular dynamics simulations of lipid membranes. In this
model, electrostatics are modeled explicitly by point charges, and one water molecule is
represented by a single Lennard-Jones bead embedded with a point dipole. Genheden
(2016) expanded the ELBA force field to model 1-hexanol, 1-nonanol, n-hexane, and
n-nonane by representing three carbons with a single bead. Another CG model for
water based on the Mie Potential is the SAFT-γ Mie force field (LOBANOVA et al., 2015).
In this strategy, there are two different models: CGW1-vle and CGW1-ift. Both of them
represent one water molecule as one bead, and the Mie Potential has a repulsive and
an attractive exponent equal to 8 and 6, respectively. The CGW1-vle model was param-
eterized using saturated-liquid density and vapor pressure data and should be used
for simulations of aqueous systems in fluid-phase equilibrium at high temperatures
and pressures. This model still suffers from premature freezing with a triple point at
343 K. The other model, CGW1-ift, was parameterized using saturated-liquid density
and interfacial tension data. Hence, it is best suited for interfacial property calculations.
Both models had temperature-dependent size and energy parameters and performed
well for these properties over the entire liquid temperature range. The SAFT-γ Mie force
field has also been applied to other compounds with satisfactory results. Müller and
Mejía (2017) parameterized the force field for aromatic compounds and tested it with
simulations of fluid phase equilibrium. Herdes et al. (2015) carried out simulations of
alkanes and light gases. Lobanova et al. (2016) tested the force field with binary and
ternary mixtures of water and carbon dioxide. There are also articles with the SAFT-γ
Mie being used for computing thermodynamic and transport properties of carbon diox-
ide and methane (AIMOLI et al., 2014a; AIMOLI et al., 2014b) and water/oil interfacial
tension (HERDES et al., 2017).

2.3 Solvation Free Energies

Solvation free energy calculations with molecular dynamics can be used to
evaluate the quality of a coarse-grained force field, such as the models described in
the preceding section, since these estimations can reveal deficiencies in a force field.
Besides this application, solvation free energies are used to obtain information about
the behavior of the solvent in different thermodynamic conditions and to assess the
influence of the solute’s molecular geometry on the solvation phenomenon. Due to
their range of application and inherent complexity, free energy calculations were the
subject of a variety of studies in the last decades interested in improving the free energy



22

simulations and their post-processing methods (SHIRTS; CHODERA, 2008; PALIWAL;
SHIRTS, 2011; SHIRTS; PANDE, 2005; YTREBERG et al., 2006).

Recent articles (MOBLEY; GUTHRIE, 2014; MATOS et al., 2017) made available a
large database of hydration free energies of small molecules using the GAFF force field
for the solutes and the TIP3P model for water. Beckstein et al. (2014) also calculated the
hydration free energies for fifty-two compounds with the OPLS-AA force field. They
obtained an overall root mean square deviation from the experimental data of 1.75
kcal/mol and concluded that the reproducibility of the Lennard-Jones parameters is the
main constraint of the precision of their results. Izairi and Kamberaj (2017) also studied
hydration free energies but with the intention of comparing the polar and nonpolar
contributions. Garrido et al. (2009, 2011) calculated the free energy of solvation of large
alkanes in 1-octanol and water with three different force fields (TraPPE, GROMOS, and
OPLS-AA/TraPPE). These authors also estimated the solvation free energy of propane
and benzene in non-aqueous solvents like n-hexadecane, n-hexane, ethylbenzene, and
acetone with the united atoms TraPPE force field (TraPPE-UA) and the all-atoms TraPPE
force field (TraPPE-AA). Roy et al. (2017) addressed the choice of the Lennard-Jones
parameters for predicting solvation free energy of different solutes in 1-octanol. They
calculated the solvation free energy of a set of 205 small organic molecules in 1-octanol
and found that the force field parametrization of n-octanol proposed by Kobryn and
Kovalenko (2008) provided the best agreement to the experimental data. Gonçalves
and Stassen (2005) calculated the free energy of solvation using the polarizable con-
tinuum model coupled to molecular dynamics simulation with the GROMOS force
field. These calculations were done with a representative set of solutes and with the
solvents tetrachloride, chloroform, and benzene. Using the GAFF and the polarizable
AMOEBA force fields, Mohamed et al. (2016) evaluated the solvation free energy of
small molecules in toluene, chloroform, and acetonitrile, and obtained a mean unsigned
error of 1.22 kcal/mol for AMOEBA and 0.66 kcal/mol for GAFF. To define the role of
water as the solvent in the docking structure determination of proteins, Matubayasi
(2017) developed a method to compute the solvation free energy of proteins while using
OPLS-AA force field for the solutes and the TIP3P model for water. Genheden (2016)
expanded the ELBA force field to calculate solvation free energies of more than 150
solutes taken from the Minnesota solvation database in polar (water, hexanol, octanol,
and nonanol) and apolar (hexane, octane, and nonane) solvents. He obtained mean
absolute deviations of 1 kcal/mol for water and 1.5 kcal/mol for hexane. In this model,
three carbons are represented by a single bead and water is also represented by a single
bead.

Despite the variety of data using the intramolecular Lennard-Jones potential,
there are not many studies with the Mie Potential in free energy calculations. That
is why we, in the present study, try to provide information about these predictions
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with the SAFT-γ Mie coarse-grained force field. As said before, the output of these
calculations are highly dependent on the force field, and some coarse-grained models
produced satisfactory results for these simulations. In addition, the use of a coarse-
grained model can decrease the simulation time, as explained in Section 2.2. Therefore,
the consideration of other coarse-grained approaches with similar performances to the
all-atoms force fields can help increase the scale of solvation free energy calculations.

2.4 Solvation Free Energy Calculation Methods

Solvation free energy calculations account for the difference in free energy related
to transferring the solute from the ideal gas phase to the liquid solvent phase. To do that,
we gradually insert the solute in the solvent. This process is mathematically carried
out by using a coupling parameter (λ) on the total potential energy function, where
λ represents the intermediate states in the transition from the solute in the ideal gas
phase (λ = 0) to the solute entirely inserted in the solvent phase (λ = 1). Hence, during
the solvation free energy simulations, we obtain total potential energies corresponding
to these coupling parameters [(U(λ)]. After the simulations, these potential energies
need to be post-processed and analyzed so as to calculate the solvation free energies
efficiently. Therefore, in this section, we present a quick review of the methods available
in the literature to perform the estimation of the solvation free energies. Since these cal-
culations can have slow convergence, many scientific groups in the last decades focused
on developing analysis methods to estimate these free energies. Almost all of these
methods rely on the following approaches: thermodynamic integration, histograms,
and free energy perturbation (FEP) based methods.

2.4.1 Thermodynamic integration

The thermodynamic integration method (KIRKWOOD, 1935) uses equilibrium
averages to evaluate the energy derivative with respect to the coupling parameter (λ):

∂(G 1/κbT )

∂λ
=

〈
∂H
∂λ

〉
N,P,T

. (2.1)

In Eq. (2.1), κb is the Boltzmann constant, G is the Gibbs free energy and H
is the Hamiltonian of the system. The derivative is obtained through an analytical
expression for every configuration data among the states retrieved from the molecular
dynamics simulations. Some examples of methods for obtaining these expressions are
the trapezoidal rule or natural cubic spline (PALIWAL; SHIRTS, 2011). There are also
more complex schemes that are usually system specific, such as those found in Jorge
et al. (2010) and Shyu and Ytreberg (2010). With the MD simulations for each coupling
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parameter λk carried out, the average over the derivative at each state is computed and
the free energy can be estimated upon integration over all λ-points:

∆G ≈
∫ 1

0

〈
∂H
∂λk

〉
dλ. (2.2)

The thermodynamic integration method has as a disadvantage its sensibility to
the choice of intermediate states and the necessity of a higher number of intermediate
states when compared to the other methods discussed here (RUITER et al., 2013).

2.4.2 Histograms

Histograms are used to compute probability distributions. Usually, every his-
togram count is treated as the number of visits to a specific state. The standard practice
when using histograms is to use the weighted histogram analysis method (WHAM)
developed by Ferrenberg and Swendsen (1989) and generalized by Kumar et al. (1992)
(CHIPOT; POHORILLE, 2007). It puts together different histograms by minimizing the
statistical error in the computed density of states and entropy function. This method
describes the total probability distribution as a weighted unbiased sum of probability
distributions from biased simulations. It was developed to avoid problems related to
data loss and high uncertainties (ROUX, 1995). The probability distribution dependent
on the potential energy (U ) and temperature (T) for the WHAM is

%̃∗r(U, T ) =

∑
i fi(U) exp(−βU)∑

i ftot,i exp(βiÃi − βiU)
,

exp(−βiÃi) =
∑
U

%̃∗r(U, T ), and

%̃r(U, T ) =
%̃∗r(U, T )∑
U %̃
∗
r(U, T )

,

(2.3)

where β = 1/κbT , Ãi gives the free energy for run i, fi(U) is the number of counts of
energy U for run i, and ftot,i is the total number of counts in run i. Eq. (2.3) is solved
self consistently with the initial value for Ãi equals to zero. The final unnormalized
probability distribution is then given by %̃r(U, T ).

2.4.3 Free Energy Perturbation (FEP)

The free energy perturbation method (ZWANZIG, 1954) is one of the most
general-purpose strategies to calculate free energy differences. In this method, the
thermodynamics of two different systems (A and B) are related to the intention of
evaluating differences in intermolecular potentials. This energy change from state A to
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state B is calculated by

∆GAB = −κbT ln〈e−β(UB−UA)〉A. (2.4)

According to the equation above, the free energy difference is calculated by doing
an average over the configurations of state A and B obtained during the simulation of
state A. This method requires a great overlap between the configurations of the states
in order to obtain a rapid convergence of the free energy difference. Overlap between
configurations A and B means that the configurations of state B represent only a small
perturbation in the configurations of state A. To guarantee overlap, it is possible to carry
out simulations in N intermediate states between A and B, so Eq. (2.4) becomes:

∆GAB = −κbT
N∑
i=0

ln〈e−β(Ui+1−Ui)〉i. (2.5)

This way of calculation ∆G is also called Exponential Averaging (EXP) (ZWANZIG,
1955; PALIWAL; SHIRTS, 2011). The direction of the transformation is crucial in this
method. If the direction is of decreasing entropy, the step is of insertion (∆GAB), and
the method is called insertion exponential averaging (IEXP). When the direction is of
increasing entropy, the step is of deletion (∆GBA), and the method is labeled as deletion
exponential averaging (DEXP) (PALIWAL; SHIRTS, 2011). These directions can yield
different values of free energy differences due to undersampling in the tail regions
of the ∆GAB distribution (KLIMOVICH et al., 2015; POHORILLE et al., 2010). These
problems make the EXP methods not suited to calculate free energy differences when
the system does not have sufficient overlap. For these cases, the Bennett Acceptance
Ratio or the Multi-State Bennett Acceptance Ratio are more adequate.

2.4.3.1 Bennett Acceptance Ratio (BAR)

The BAR method (BENNETT, 1976) was developed with the intent of eliminating
the directional bias in the free energy estimation with FEP. It uses the uncorrelated
samples of the potential energy in both directions (A → B and B → A) to obtain the
free energy differences utilizing the information in a statically optimal way. The free
energy difference between two intermediate states is calculated using the potential
energy difference (∆U ) between states i and j. The calculation is done by solving self-



26

consistently the following equations:

∆Gij =
1

β
ln


∑Nj

k=1

1

1 + exp[−β(∆U j
k + C)]∑Ni

l=1

1

1 + exp[−β(∆U i
l − C)]

+ C − 1

β
ln

(
Nj

Ni

)
, (2.6)

C = ∆Gij +
1

β
ln

(
Nj

Ni

)
. (2.7)

The total free energy difference between the end states is then given by the
sum over differences of consecutive intermediate states. This method also provides a
function to obtain the variance for the free energy differences, which is a minimum. The
variance equation for any value of C is given by:

s2
ij =

1

β2Ni

[
〈f 2(x)〉i
〈f(x)〉2i

− 1

]
+

1

β2Nj

[
〈f 2(x)〉j
〈f(x)〉2j

− 1

]
, (2.8)

where f(x) = 1/(1+x) is the Fermi function and x = exp[β(∆U−C)]. The variance of the
free energy difference between end states can be calculated by assuming independent
errors and summing over the variances of consecutive intermediate states. However,
this assumption is not correct and there is no general formula to obtain a statistically
unbiased estimate of an entire transformation with the BAR method (PALIWAL; SHIRTS,
2011).

There are two other methods related to the BAR method that do not solve Eqs.
(2.6) and (2.7) self consistently. By doing that, free energy differences will not have
minimum variance and the averages of Eqs. (2.6) - (2.8) are accumulated (PALIWAL;
SHIRTS, 2011). The two methods are the Unoptimized Bennett Acceptance Ratio (UBAR)
and the Range-Based Bennett Acceptance Ratio (RBAR). The first one avoids the self
consistent solution of the BAR equations by defining C = β−1ln(Nj/Ni). The UBAR
method will be close to optimal when each intermediate free energy is relatively near
zero. In turn, the RBAR method selects a range of initial guesses of the constant C to
calculate a range of ∆Gij . The value of free energy difference corresponding to the
minimum variance is then used as input in Eq. (2.7) to calculate the value of C. Hence,
this method requires a good estimation of the initial range of the values of C. The RBAR
can be advantageous when compared to BAR since only the accumulated averages need
to be retained for postprocessing (PALIWAL; SHIRTS, 2011).
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2.4.3.2 Multistate Bennett Acceptance Ratio (MBAR)

The MBAR method (SHIRTS; CHODERA, 2008) is a further development of
the BAR method, and is the one chosen to estimate the solvation free energies in
this dissertation. This method consists of an estimator that computes free energies
and their uncertainties of each K state by minimizing the K ×K matrix of variances
simultaneously. The estimator solves the following equation for eachGi self consistently:

Gi = − 1

β
ln

K∑
k=1

Nk∑
n=1

exp[−βUi(xkn)]∑K
l=1Nl exp[β(Gl − Ul(xkn))]

. (2.9)

The equation above requires the evaluation of the potential energy [Ui(xkn)] of
the nth uncorrelated configuration obtained at state K and all uncorrelated configuration
snapshots (Nk) from state K. Free energy changes between states are given then by
∆Gij = Gj−Gi. Much like the majority of the other methods exposed in this section, the
MBAR provides a statistical estimator for the free energies and their variances. Hence,
the reason we choose MBAR to estimate the free energy differences is that it provides
an estimator with lowest variances than the other methods and it is perhaps the most
consistently well-performing free energy estimator (PALIWAL; SHIRTS, 2011). Since
this is the chosen method, further explanation of MBAR is available in Section 3.5 of the
Computational Methods Chapter.



3 Computational Methods

The primary goal of this study was to obtain solvation free energy estimates
of asphaltene-like molecules using molecular dynamics. In order to do that, we used
a variety of computational methods including the molecular dynamics itself, the pa-
rameterization of the SAFT-γ Mie force field, the solvation free energy simulations, the
expanded ensemble method, and the MBAR method, briefly explained in the preceding
chapter. The aforementioned methods are then presented and explained here.

3.1 Molecular Dynamics

3.1.1 Background and Formulation

Molecular Dynamics (MD) uses molecular configurations (Cartesian coordinates
and momentum) to extract structural, thermodynamic, and dynamic information of
a system. This information is extracted from the time evolution of the system, which
is obtained through the numerical integration of the Newton’s equations of motion
(TUCKERMAN, 2010):

d~pi
dt

= −∂U(~rN)

∂~ri
, (3.1)

where pi is the momentum and rN are the coordinates of all the atoms (x1, y1, z1, ..., xN ,

yN , zN). Alternatively, we can write the equation relative to the velocity (vi):

mi
~vi
dt

= −∂U(~rN)

∂~ri
. (3.2)

In order to develop equations for any coordinate system, for instance qN =

(r1, θ1, φ1), the Hamiltonian formulation, a more general formulation of classical me-
chanics, is used to develop the equations of motion:

H(qN , pN) = K(pN) + U(qN). (3.3)

In the equation above, K is the kinetic energy and U is the potential energy. The
equations of motion are then rewritten using the Hamiltonian:

d~pi
dt

= −∂H
∂~qi

, (3.4)
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d~qi
dt

=
∂H
∂~pi

. (3.5)

In the dynamics described by the equations above, the Hamiltonian is preserved.
The coordinate and momentum axes for each atom in a 6N dimensional space is defined
as the phase space. The trajectory through the phase space is then the time evolution
of a system in a molecular dynamics simulation. This evolution of the simulation may
be used to calculate the thermodynamic properties if the system is ergodic, that is, a
trajectory in this system will explore with the same probability all regions of the phase
space of microstates (points in phase space) with the same energy (SHELL, 2015).

3.1.2 Statistical Ensembles

In order to calculate thermodynamic properties, we need to define the control
variables of a system. For an isolated system at equilibrium, the control variables are
the number of particles (N), volume (V), and total energy (E). The set of configurations
under the control variables is then called statistical ensemble. In the example cited
above, it is specifically named the microcanonical ensemble. Following the ergodic
hypothesis, the system at these conditions will spend the same amount of time in each
of the microstates with the fixed Hamiltonian. The number of accessible microstates is
defined by the partition function or the density of states, and is given by the following
equation for the microcanonical ensemble:

Ω(N, V,E) =
ε0

h3NN !

∫
dpNdrNδ[H(pN , rN)− E]. (3.6)

Here, ε0 is the energy unit, h is the Planck constant, and δ is the Dirac delta
function. As mentioned above, the system will spend the same amount of time at each
of the microstates, i. e. each of these microstates have equal probabilities (%) of being
visited. Such probability is:

%(pN , rN) =
[H(pN , rN)− E]

Ω(N, V,E)
. (3.7)

The macroscopic properties from molecular dynamics are then obtained from
the relation of the microcanonical partition function to the entropy (S). Known as the
Boltzmann equation. It is:

S = κbln[Ω(N, V,E)], (3.8)

where κb is the Boltzmann constant. With these equations, we can derive other relations
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to macroscopic properties with the fundamental thermodynamic equations:

dS =
1

T
dE +

P

T
dV − µ

T
dN, (3.9)

dE = TdS − PdV + µdN. (3.10)

As said above, the microcanonical ensemble has N, V, and E as its control vari-
ables. Other ensembles can also be defined according to the macroscopic properties held
constant. In the canonical ensemble, N, V, and the temperature (T) are held constant
and N, pressure (P), and T are held constant in the isothermal-isobaric ensemble. Other
ensembles are the isoenthalpic-isobaric (constant number of particles, pressure, and en-
thalpy) and the grand canonical (constant chemical potential, volume, and temperature)
ones. A variety of physical properties is measured at the conditions of the isothermal-
isobaric ensemble such as enthalpies, entropies, redox potential, equilibrium constants,
and free energies, what makes this ensemble one of the most important (TUCKERMAN,
2010). This is also the ensemble in which solvation free energy simulations are carried
out in this work, hence we are going to briefly describe it. This ensemble is obtained
from a Legendre transformation on the canonical ensemble. The Helmholtz free energy
A(N, V, T ) becomes the Gibbs free energy G(N,P, T ) by transforming the volume into
the external pressure:

G(N,P, T ) = A(N, V, T ) + PV, (3.11)

where V = V (P ). The Gibbs free energy is related to its partition function ∆(N,P, T )

by:

G(N,P, T ) = −κbT ln∆(N,P, T ), (3.12)

where ∆(N,P, T ) is given by:

∆(N,P, T ) =
1

V0N !h3N

∫ ∞
0

dV

∫
dpNdrN exp

[
−β
(
H(rN , pN) + PV (rN)

)]
. (3.13)

The Helmholtz free energy is then given by:

A(N, V, T ) = −κbT lnQ(N, V, T ). (3.14)

In the equation above, Q(N, V, T ) is the partition function of the canonical en-
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semble:

Q(N, V, T ) =
1

h3NN !

∫
dpNdrN exp

[
−βH(rN , pN).

]
(3.15)

From these relations and a differential change in G, we can obtain the chemical
potential (µ), the average volume (〈V 〉), and entropy relations for isothermal-isobaric
ensemble:

µ =

(
∂G

∂N

)
P,T

= −κbT
(
∂ln∆(N,P, T )

∂N

)
P,T

, (3.16)

〈V 〉 =

(
∂G

∂P

)
N,T

= −κbT
(
∂ln∆(N,P, T )

∂P

)
N,T

, (3.17)

S = −
(
∂G

∂T

)
N,P

= κb

[
ln∆(N,P, T ) + T

(
∂ ln ∆(N,P, T )

∂T

)
N,P

]
. (3.18)

3.1.3 Thermostats and Barostats

The isothermal-isobaric and canonical ensembles have external conditions being
applied to it (temperature and pressure). For temperature control, the method employed
mimics the effect of a thermal reservoir through the use of a thermostat. The thermostats
need to be capable of capturing the correct energy fluctuations in the system since the
kinetic energy will fluctuate when using a heat bath to control the temperature in a
canonical ensemble of a finite system (FRENKEL; SMIT, 2001).

Among the available thermostat are the Berendsen (BERENDSEN et al., 1984),
the Andersen (ANDERSEN, 1980), and the Nosé (NOSÉ, 1984) thermostats, but, here,
we are going to discuss the most widely used thermostat: the Nosé-Hoover (HOOVER,
1985). This thermostat is based on the formulation of Nosé (NOSÉ, 1984), who used a
Lagrangian that contains additional and artificial coordinates and velocities (FRENKEL;
SMIT, 2001). In this method, the Hamiltonian in a canonical ensemble is constructed as:

HNosé = K(pN) + U(qN) +
ξ2Q

2
+ 3NκbT lns, (3.19)

where ξ is a friction coefficient related to the conjugate momentum of the thermal
reservoir to which the system is coupled, s is the position of the thermal reservoir, and
Q is a parameter that determines the time scale. The velocity update is then done with
the friction term added to the equations of motion (SHELL, 2015):

dri
dt

=
pi
mi

, (3.20)
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dpi
dt

= −∂U(rN)

∂ri
− ξpi, (3.21)

dξ

dt
=

∑
p2
i /mi − 3NκbT

Q
, (3.22)

1

s

ds

dt
=
d ln s

dt
= ξ. (3.23)

This approach proposed by the Nosé-Hoover thermostat only generates a correct
canonical distribution for molecular systems in which there are no external forces (Fi)
and the center of mass is fixed or if there is only one conserved quantity (FRENKEL;
SMIT, 2001). To diminish these restrictions of the Nosé-Hoover thermostat, the Nosé-
Hoover chains of thermostats method was developed by Martyna et al. (1992). This
method is the one chosen to control the temperature in our simulations. It proposes
the use of another thermal reservoir or a whole chain of thermal reservoirs in order to
enhance temperature equilibration (SHELL, 2015). Here, we are going to present its
equations of motion since this was the method used in this dissertation. The equations
of motion of a system of N particles coupled with M Nosé-Hoover chains is given by

dri
dt

=
pi
mi

, (3.24)

dpi
dt

= Fi −
pξ1
Q1

pi, (3.25)

dξk
dt

=
pξk
Qk

k = 1, ...,M, (3.26)

dpξ1
dt

=
∑

p2
i /mi − 3NκbT −

pξ2
Q2

pξ1 , (3.27)

dpξk
dt

=
p2
ξk−1

Qk−1

− κbT −
pξk+1

Qk+1

pξk , (3.28)

dpξM
dt

=
p2
ξM−1

QM−1

− κbT. (3.29)
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The conserved energy for the Nosé Hoover chains is then equal to

HNosé Chains = K(pN) + U(qN) +
M∑
k=1

p2
ξk

2Qk
+ 3NκbTξ1 +

M∑
k=2

κbTξk. (3.30)

The pressure is controlled with a barostat. It maintains the pressure constant dur-
ing the simulation by adjusting the simulation volume. Among the available barostats
methodologies are the Berendsen (BERENDSEN et al., 1984), in which the pressure is
coupled to a pressure bath, and the volume is periodically rescaled, and the Andersen
barostat (ANDERSEN, 1980), which serves as a basis for other barostating methods such
as the ones developed by Hoover (HOOVER, 1985), Martina-Tobias-Klein (MARTYNA
et al., 1994) and Parrinello-Rahman (PARRINELLO; RAHMAN, 1981). The Andersen’s
idea was to couple the system to a fictional pressure bath and incorporate the volume
into the phase space as an additional degree of freedom (TUCKERMAN, 2010). Here,
we are going to present the approach developed by Martyna et al. (1994) since this was
the one used to control the pressure in our simulations. The equations of motion for a
chain of barostats of length M are given by

dri
dt

=
pi
mi

+
pε
W
ri, (3.31)

dpi
dt

= Fi −
(

1 +
d

dN

)
pε
W
pi −

pε1
Q1

pi, (3.32)

dV

dt
=
dV pε
W

(3.33)

dpε
dt

= dV (Pint − Pext) +
1

N

N∑
i=1

p2
i

mi

− pξ1
Q1

pε, (3.34)

dξk
dt

=
pξk
Qk

k = 1, ...,M, (3.35)

dpξ1
dt

=
∑ p2

i

mi

+
p2
ε

W
− (dN + 1)κbT −

pξ2
Q2

pξ1 , (3.36)

dpξk
dt

=
p2
ξk−1

Qk−1

− κbT −
pξk+1

Qk+1

pξk k = 2, ...,M − 1, (3.37)
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dpξM
dt

=
p2
ξM−1

QM−1

− κbT. (3.38)

In the equations above, ε is equal to

ε = ln

[
V

V (0)

]
, (3.39)

where V is the volume of the system and V (0) is the volume at t = 0. The parameter
(W) associated to ε, the momentum (pε) conjugate to ε, the external pressure (Pext),
and the internal pressure (Pint) are also featured in the equations of motion. Pext is
imposed as we do with the temperature in the thermostat and Pint is calculated during
the simulation with the following equation (TUCKERMAN, 2010):

Pint =
1

dV

[
N∑
i=1

(
p2
i

mi

+ ri · Fi
)
− dV ∂U

∂V

]
. (3.40)

Finally, the conserved energy for the chain of barostats proposed by Martyna et
al. (1994) is equal to

HN,Pext,T = K(pN) +U(qN) +
p2
ε

W
+

M∑
k=1

p2
ξk

Qk
+ (dN + 1)κbTξ1 +κbT

M∑
k=1

ξk +PextV. (3.41)

All the equations of motion above are then numerically integrated using the
methodologies described in the next section.

3.1.4 Integration of the equations of motion

With the formalism defined for the equations of motions and the statistical
ensemble, we can now derive discrete-time numerical approximations for them. The
basic idea is to solve the trajectory of atoms as a function of time [rN(t)] by updating the
positions at discrete time intervals or time steps. To do that, the classical time evolution
approach is used to preserve the Hamiltonian of the system in the numerical integration
methods. In this approach, we consider the time evolution of an arbitrary function a(xt)

along a trajectory xt (TUCKERMAN, 2010). Doing the time derivative of a(xt):

da

dt
=

3N∑
α=1

[
∂H
∂pα

∂a

∂qα
− ∂H
∂qα

∂a

∂pα

]
. (3.42)

In the equation above, we can represent the time evolution of a(xt) with the
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Poisson bracket:

da

dt
= {a,H}. (3.43)

The Poisson bracket is equal to applying the Liouville operator (iL) on the phase
space. Hence,

da

dt
= iLa. (3.44)

Substituting Eq. 3.44 in Eq. 3.42, we have the following equation:

iLa =
3N∑
α=1

[
∂H
∂pα

∂a

∂qα
− ∂H
∂qα

∂a

∂pα

]
. (3.45)

The solution of Eq. 3.44 for a(xt) is given by

a(xt) = exp(iLt)a(x0). (3.46)

Here, exp(iLt) is known as the classical propagator. The effect of this operator in
a function can not be evaluated. However, we can develop approximate solutions for
the Hamiltonian’s equations with this operator (TUCKERMAN, 2010). Rewriting Eq.
3.45 as

iL = iL1 + iL2, (3.47)

where

iL1 =
N∑
α=1

∂H
∂pα

∂

∂qα
,

iL2 = −
N∑
α=1

∂H
∂qα

∂

∂pα
.

(3.48)

The operators iL1 and iL2 in the equations above are non-commuting opera-
tors, that is, the order in which the operator is applied is important (TUCKERMAN,
2010). This fact implies that we can not separate the classical propagator exp(iLt) into
the product exp(iL1t) exp(iL2t). Though we can not do that, we can still express the
propagator in terms of these two factors by using the symmetric Trotter theorem or
Strang splitting formula (TROTTER, 1959; STRANG, 1968). Applying this theorem to
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the classical propagator, we then obtain

exp(iLt) = exp(iL1t+ iL2t) =

lim
P→∞

[exp(iL2t/2P ) exp(iL1t/P ) exp(iL2t/2P )]P ,
(3.49)

where P is an integer. Defining a time step ∆t = t/P and using it in Eq. 3.49, we have

exp(iLt) = lim
P→∞,∆t→0

[exp(iL2∆t/2) exp(iL1∆t) exp(iL2∆t/2)]P . (3.50)

In order to obtain an approximation for exp(iLt), we do not take the limits and
consider that P is a finite number (TUCKERMAN, 2010). The resulting approximation
for the classical propagator is then

exp(iLt) ≈ [exp(iL2∆t/2) exp(iL1∆t) exp(iL2∆t/2)]P + ϑ(P∆t3), (3.51)

using P = t/∆t

exp(iL∆t) ≈ exp(iL2∆t/2) exp(iL1∆t) exp(iL2∆t/2) + ϑ(∆t3). (3.52)

Now we can use Eq. 3.52 as a numerical propagation for a single time step (∆t).
Using this propagation on a single particle moving with Hamiltonian, where iL1 = K(p)

and iL2 = U(r), we obtain

exp(iL∆t) ≈ exp

(
−∆t

2

∂U

∂r

∂

∂p

)
exp

(
∆t

p

m

∂

∂r

)
exp

(
−∆t

2

∂U

∂r

∂

∂p

)
, (3.53)

where the derivatives of the intermolecular potential −∂U(r)

∂r
are equal to the force (F )

acting on the particle. We now are able to replace the exact solution of Eq. 3.46 with
the approximation of Eq. 3.53. The approximation evolution from a initial condition
(r(t), p(t)) is then

[
r(t+ ∆t)

p(t+ ∆t)

]
≈ exp

(
∆t

2
F (r(t))

∂

∂p

)
× exp

(
∆t
p(t)

m

∂

∂r

)

× exp

(
∆t

2
F (r(t))

∂

∂p

)[
r(t)

p(t)

]
.

(3.54)

The propagation is determined by acting each of the three operators starting
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from the right on r and p. The result of applying the operator in a function g(r) is
the Taylor expansion g(r + c). Hence, after applying the first operator, we obtain the
equation bellow (TUCKERMAN, 2010):

exp

{
∆t

2
F [r(t)]

∂

∂p

}[
r(t)

p(t)

]
=

[
r(t)

p(t) + ∆t
2
F (r(t))

]
. (3.55)

Acting the second operator in the preceding equation, the result is the following:

exp

[
∆t
p(t)

m

∂

∂r

] [
r(t)

p(t) + ∆t
2
F [r(t)]

]
=

[
r(t) + ∆t

m
p(t)

p(t) + ∆t
2
F [r(t) + ∆t

m
p(t)]

]
. (3.56)

and, finally, we find the following equations after applying the third operator :

exp

{
∆t

2
F [r(t)]

∂

∂p

}[
r(t) + ∆t

m
p(t)

p(t) + ∆t
2
F [r(t) + ∆t

m
p(t)]

]
=[

r(t) + ∆t
m
{p(t) + ∆t

2
F [r(t)]}

p(t) + ∆t
2
F [r(t)] + ∆t

2
F{r(t) + ∆t

m
[p+ ∆t

2
F (r(t))]}

]
.

(3.57)

Using the equations above and substituting p/m for v, the final position r(t+ ∆t)

can be written as

r(t+ ∆t) = r(t) + v(t)∆t+
F (t)

2m
∆t2. (3.58)

Eq. 3.58 is the position update part of the velocity-Verlet algorithm (VERLET,
1967). In this method, the positions are updated by a time step of ∆t by using the
positions at the previous time steps and forces. These recalculations of forces at each
time step are the most computationally expensive part of the simulation since we have
to take the derivative of the potential energy at each time step. The equation to update
the velocity can also be derived from the equations above. It is given by

v(t+ ∆t) = v(t) +
F (t+ ∆t) + F (t)

2m
∆t. (3.59)

Instead of using a time step of ∆t, the velocities can be updated at ∆t/2. This is
the strategy proposed by the leap frog algorithm:

v(t+ ∆t/2) = v(t−∆t/2) +
F (t)

m
∆t, (3.60)
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r(t+ ∆t) = r(t) + v(t+ ∆t/2)∆t. (3.61)

Although using different time steps or formulations, both of the methods de-
scribed here generate the same trajectory for a given initial configuration.

3.1.5 Initial Configuration and Periodic Boundary Condition

The equations from the preceding section require an overlap-free initial config-
uration with positions and velocities for all atoms in the system. The initial velocities
follow a temperature-dependent Maxwell-Boltzmann distribution, which is

%(vx,i) =

(
mi

2πκbT

) 1
2

exp

(
−
miv

2
x,i

2κbT

)
. (3.62)

Random velocities are then found with the equation above for each of the 3N
components of the velocity, and the initial positions can be obtained by several ap-
proaches. The initial configuration can be taken from an x-ray or a nuclear magnetic
resonance (NMR) spectroscopy, the atoms can be placed randomly in the simulation
volume, or the atoms can be placed in idealized or approximate geometries. The gener-
ally used method to acquire the configurations places the molecules on a cubic lattice
(SHELL, 2015). Among the available software to optimize this placement, there is the
Packmol software (MARTÍNEZ et al., 2009). It treats the initial configuration problem
as a packing optimization problem. The molecules are packed in such way that atoms
from different molecules keep a safe pairwise distance and, due to the optimization
function and gradient evaluations, this strategy enables the packing of millions of atoms
in reasonable time (MARTÍNEZ et al., 2009).

Independently of the technique or software used, certain restrictions should be
applied in the initial configurations to carry out molecular simulations. As an example,
the cubic lattice has a finite size, but a finite box would result in simulations dominated
by surface effects. To avoid that and be able to simulate bulk phase, we can create a
box periodically repeated in all directions by applying the so-called Periodic Boundary
Conditions (PBC) (FRENKEL; SMIT, 2001). The periodic box has a primitive cell, which
contains the N particles, replicated in a periodic lattice of infinite cells as represented in
Figure 3.1.1.
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Figure 3.1.1 – Representation of the periodic boundary condition.

The application of the PBC results in particles interacting not only with each other
but also with their images. This fact significantly increases the number of interacting
pairs and, consequently, the computational time. To overcome that, we need to choose a
limited range potential using the minimum image convention criterion. This criterion
only allows a particle to interact with the nearest particle or image. This is technically
done during the simulations by neglecting the interactions between two particles at or
beyond a maximum length, which is given the name of cutoff radius (Rc). This cutoff
should be equal to or less than half of the box length. This process of examining each
pair separation can also be expensive depending on the number of distinct pairs. That is
the reason molecular dynamics algorithms use pair listings. This method defines a ’skin’
around the cutoff radius with a radius RList, as represented in Figure 3.1.2. The pair list
is initially built of all the neighbor particles within a distance RList of each particle. Over
the course of the simulation, only pairs in the pair list interact. We then will have a list
of all particles j with which a particle i interacts as an example. The pair list must then
be updated from time to time during the simulation since particles typically diffuse
(TUCKERMAN, 2010).
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Figure 3.1.2 – Representation of the cutoff radius and the pair list radius. Adapted from
Tuckerman (2010).

3.1.6 Force Fields

As said previously, we need to calculate the derivative of the potential energy
function in relation to the coordinates in order to update the positions during a simula-
tion. Therefore, we need a model for this potential energy functions. These models are
called force fields. They can describe structural characteristics such as van der Waals
interactions, bond lengths, bond angles, and torsion in a molecular simulation. The
description is done by approximating the potential energy function [U(rN)], which has
contributions due to intermolecular and intramolecular interactions. The intramolecular
interactions include bond stretching, angle bending, and bond torsion. An illustration
of these interactions can be seen in Figure 3.1.3.

[a] [b]

[c]

Figure 3.1.3 – Representation of bond stretching [a], angle bending [b], and bond
torsion [c].

In this dissertation, we are going to present the equations which are most used
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to represent these interactions. The contribution to the bond stretching (bs ) is usually
given by the harmonic approximation around the energy minimum:

ubs(d) = kbs(d− d0)2. (3.63)

Here, d is the bond length, d0 is the equilibrium bond length, and kbs is a bond
stretching constant. The angle bending (ab) contribution corresponds to deviations from
the preferred geometry and is often given by:

uab(θ) = kab(θ − θ0)2, (3.64)

where kab and θ0 are constants defined by the force field and θ is the bond angle between
three atoms. The bond torsion (bt) interactions correspond to the energies of rotations
around bonds, and it happens among four atoms. A commonly used model is

ubt(ω) =
N∑
n=0

cncos
n(ω), (3.65)

where N is the number of terms, cn is the coefficient defined by the force field, and ω is
the torsional angle also defined by the force field.

The other type of interactions, the intermolecular interactions or non-bonded
interactions, can include interactions due to charges, point-dipole moment, and van der
Waals interactions. The first one represents the interaction between two atoms i and j
with partial charges (qi and qj) and they are usually represented by Coulomb’s Law:

uqq(rij) =
qiqj

4πε0rij
. (3.66)

In the equation above, ε0 is the free space permittivity constant and rij is the dis-
tance between atoms i and j. The interaction between the partial charges and the dipole
moments of particles (uqp) and the dipole-dipole (upp) interactions can be expressed as:

uqp(rij) =
q

r3
ij

(p • ~rij). (3.67)

upp(rij) =
1

r3
ij

(~pi • ~pj)−
3

r5
ij

(~pi • ~rij)(~pj • ~rij). (3.68)

where pi and pj are dipole moments of the two particles.

In many force fields, the van der Waals interaction between particles i and j is
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modeled by the Lennard-Jones Potential:

uLJ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (3.69)

where ε is the depth of the potential well, σ is the distance corresponding to a zero
intermolecular potential. The graphical representation of the Lennard-Jones potential is
presented in Figure 3.1.4.

Figure 3.1.4 – Lennard-Jones potential representation for σ = 1 and ε = 1.

The potential in Figure 3.1.4 tends to zero and becomes negligible after a specific
large value of r. In practice, this potential is truncated beyond a certain cutoff. The point
in which the cutoff is defined is generally the one in which the radial distribution func-
tion [g(r)] is approximately constant. Also, only interactions with the nearest periodic
image of the cell are considered for short-range interactions as explained in Section
3.1.5. With this conditions, the calculations of forces and velocities are computationally
feasible. The final potential energy function defined by the force field is then expressed
by summing all the interactions above:

U(rN) = ubs(d) + uab(θ) + ubt(ω) + uqq(rij) + uqp(rij) + upp(rij) + uLJ(rij). (3.70)
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3.2 SAFT-γ Mie Force Field

3.2.1 SAFT-VR Mie Equation of State (EoS)

The SAFT-VR Mie equation of state (LAFITTE et al., 2013) is the basis for the
SAFT-γ Mie coarse-grained force field (AVENDAÑO et al., 2011), which was the force
field used to model the molecules used in the simulations carried out in this dissertation.
This EoS was initially developed by Lafitte et al. (2013) to describe chain molecules
formed from fused segments interacting via the Mie attractive and repulsive potential.
The Mie potential is a type of generalized Lennard-Jones potential that can be used to
explicitly describe repulsive interactions of different hardness/softness and attractive
interactions of different ranges, and is given by

UMie(r) = ε
λr

λr − λa

(
λr
λa

)( λa
λr−λa ) [(σ

r

)λr
−
(σ
r

)λa]
, (3.71)

where λr is the repulsive exponent and λa is the attractive exponent. The SAFT-VR Mie
equation uses the Barker and Henderson (1976) high perturbation expansion of the
Helmholtz free energy up to the third order and an improved expression for the radial
distribution function (RDF) of Mie monomers at contact to obtain an equation able to
give an accurate theoretical description of the vapor-liquid equilibrium and second
derivative properties (LAFITTE et al., 2013). For a non-associating fluid, the Helmholtz
free energy is

ASAFT

NκbT
= aSAFT = aIDEAL + aMONO + aCHAIN , (3.72)

or, depending on the molecule type, the free energy can be equal to

ASAFT

NκbT
= aSAFT = aIDEAL + aMONO + aRING. (3.73)

Here, aIDEAL is the ideal contribution for a mixture. It is given by

aIDEAL =
Nc∑
i=1

xi ln (ρiΛi
3)− 1, (3.74)

where xi = Ni/Nc is the molar fraction of component i, Ni is the number of molecules
of each component, Nc is the total number of molecules of the system, ρi = Ni/V is the
number density, and Λ3

i is the de Broglie thermal wavelength. Also in Eq. 3.72, aMONO

is the monomer contribution, which describes interactions between Mie segments and
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can be expressed, for a mixture, as

aMONO =

(
Nc∑
i=1

xims,i

)
aM . (3.75)

In the equation above, ms,i is the number of spherical segments making up
the molecule i and aM is the monomer dimensionless Helmholtz free energy. aM is
expressed as a third-order perturbation expansion in the inverse temperature (BARKER;
HENDERSON, 1976):

aM = aHS + βa1 + β2a2 + β3a3. (3.76)

Here, aHS is the hard-sphere dimensionless Helmholtz free energy for a mixture
and is given by:

aHS =
6

πρs

[(
ζ3

2

ζ2
3

− ζ0

)
ln(1− ζ3) +

3ζ1ζ2

1− ζ3

+
ζ3

2

ζ3(1− ζ3)2

]
. (3.77)

The variable ρs = ρ
∑Nc

i xims,i is the total number density of spherical segments
and ζl are the moments of the number density:

ζl =
πρs
6

(
Nc∑
i=1

xs,idii

)
, l = 0, 1, 2, 3, (3.78)

where xs,i is the mole fraction of segments. It is related to the mole fractions of all
component (xi) by:

xs,i =
ms,ixi∑Nc
k=1ms,kxk

. (3.79)

The effective hard-sphere diameter dii for the segments is

dii =

∫ σii

0

{
1− exp

[
−βUMie

ii (r)
]}
dr. (3.80)

The integral in Eq. (3.80) is normally obtained by means of a 5-point Gauss-
Legendre quadrature (PAPAIOANNOU et al., 2014). For brevity, the detailing of the
other terms of Eq. (3.76) are available in the Appendix A. The term aCHAIN in Eq. 3.72
corresponds to the chain contribution. This chain formation of ms tangentially bonded
Mie segments is based on the first-order perturbation theory (TPT1) (PAPAIOANNOU
et al., 2014) and can be expressed as

aCHAIN = −
Nc∑
i=1

xi(ms,i − 1) ln
[
gMie
ii (σii)

]
. (3.81)
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The term gMie
ij (σij) correspond to the radial distribution function (RDF) of the

hypothetical Mie system evaluated at the effective diameter. It is obtained with the
following perturbation expansion

gMie
ij (σij) = gHSd,ij(σij) exp

[
βε
g1,ij(σij)

gHSd,ij(σij)
+ (βε)2 g2,ij(σij)

gHSd,ij(σij)

]
. (3.82)

In the equation above, gHSd,ij is equal to

gHSd,ij(σij) = exp(k0 + k1x0,ij + k2x
2
0,ij + k3x

3
0,ij), (3.83)

where x0,ij = σij/dij and k1, k2, and k3 are density dependent coefficients. These coeffi-
cients and the other terms of Eq. 3.82 are available in Appendix A.

The ring contribution (aRING) in Eq. 3.73 have two forms for rings formed
from tangentially bonded segments. The first was developed by Lafitte et al. (2012). It
considers that the difference between a chain and a ring molecule is that the latter has
one more bond that is connecting the first segment to the last. With this assumption,
Eq. (3.81) can be adapted to rings by

aRING = −
Nc∑
i=1

xims,i ln[gMie
ii (σii)]. (3.84)

According to Lafitte et al. (2012), Eq. (3.84) needs an additional parameterization
with molecular simulation data so that the EoS can be used in molecular simulations,
but this additional parameterization is not necessary when we are modeling chain
molecules. Recently, Müller and Mejía (2017) tried to correct this inconsistency. They
developed a Helmholtz free energy equation for rings based on the work of Müller
and Gubbins (1993), who obtained rigorous expressions for hard-sphere fluids with
molecular geometries of rings with ms = 3. The final expression developed for the
dimensionless Helmholtz free energy due to ring formation is

aRING = −
Nc∑
i=1

xi (ms,i − 1 + χiηi) ln
[
gMie
ii (σii)

]
, (3.85)

where ηi = ms,iρiσ
3
ii/6 is the packing fraction of the atom i and χi is a parameter which

depends on ms,i and the geometry of the ring of each component i. For a value of χ = 0,
Eq. (3.85) is equal to Eq. (3.81). In addition, the equation corresponds to a system of
hard sphere triangles when χ = 1.3827. Müller and Mejía (2017) also calculated values
of χ for ms = 3,ms = 4,ms = 5, and ms = 7 using a geometry formed by a system of
equilateral triangles. In these calculations, they used pseudo-experimental data from
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molecular dynamics (MD) for a defined pure fluid with ε/κb = 250K, σ = 3.0Ȧ, λr = 11,
and λr = 6. Values of χ for some of the geometry estimated in their article can be seen
in Figure 3.2.1.

Figure 3.2.1 – Values for parameter χ according to the ring geometry. Adapted from
Müller and Mejía (2017).

Lafitte et al. (2013) also suggested mixing rules for this EoS parameters based on
Lorentz-Berthelot combining rules (ROWLINSON; SWINTON, 1982):

σij =
σii + σjj

2
, (3.86)

dij =
dii + djj

2
, (3.87)

λk,ij − 3 =
√

(λk,ii − 3)(λk,jj − 3), k = r, a, (3.88)

εij = (1− kij)

√
σ3
iiσ

3
jj

σ3
ij

√
εiiεjj. (3.89)

The kij is a binary interaction parameter to correct the deviations of the mixing
rule. This parameter can be described as a scaling factor. It accounts for the interactions
among chemically distinct compounds, which are not explicitly considered by the SAFT-
VR Mie EoS. These mixing rules are the ones available in the literature and employed by
other papers that used this force field. Therefore, we ended up using Eqs. 3.86 to 3.89 in
our study. However, the binary interaction parameter was only necessary for aqueous
mixtures in our study. With the dimensionless Helmholtz free energy provided by the
equations above, we can now calculate the derivative properties with the fundamental
thermodynamic equation (Eq. 3.10) using the EoS. The output from these calculations
are then used to estimate the parameters of the SAFT-γ Mie force field.

3.2.2 Parameter Estimation for the SAFT-γ Mie Force Field

The SAFT-γ Mie Force Field uses a top-down coarse-graining methodology in
its parameterization. This methodology aims to obtain the intermolecular parameters
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from macroscopic experimental data such as fluid-phase equilibrium or interfacial
tension data. The idea is that the force field parameters estimated with the SAFT-VR
Mie EoS can be used in molecular simulations since both the equation of state and the
force field use the same explicit intermolecular potential model (Mie potential). This
correspondence between models has been used to parametrize a variety of fluids (ERVIK
et al., 2016b). This force field has the advantage of incorporating the degrees of freedom
provided by the use of the Mie Potential (HERDES et al., 2015). This flexibility offers
the exploration of a vast parameter space without using an iterative simulation scheme
(AVENDAÑO et al., 2011). Despite these advantages, the force field can be restricted by
the shortcomings of the equation of state. As an example, the lack of an association term
in the equation can cause an inadequate representation of the properties of hydrogen
bonding compounds.

Each substance has initially five parameters to be estimated (ms, σ, ε, λr, and
, λa) according to Eq. (3.71). The number of segments is usually fixed in an integer value
since each segment represents one pseudo atom. The attractive parameter is generally
fixed due to its high correlation with the repulsive parameter. Usually, the chosen
value for this parameter is 6, corresponding to the London model, which is a good
representation of the dispersion scale of most simple fluids that do not have strong polar
interactions (RAMRATTAN et al., 2015; HERDES et al., 2015). There are two strategies
to obtain the parameters: one is by fitting the SAFT-VR Mie EoS to experimental data
such as vapor pressure, liquid density and the other one is by using corresponding
states parametrization. The first was the one followed in this dissertation. Generally,
this approach minimizes the following unweighted least-squares objective function:

Fobj =

Np∑
i=1

[
P SAFT
v (Ti, σ, ε, λr)− P exp

v (Ti)

P exp
v (Ti)

]2

+

Np∑
i=1

[
ρSAFTl (Ti, σ, ε, λr)− ρexpl (Ti)

ρexpl (Ti)

]2

,

(3.90)

where Np is the number of experimental points, Pv is the vapor pressure, and ρl is
the saturated liquid density. Other properties that can be used in the estimation are
interfacial tension and speed of sound, for instance. The multiple parameters of the
model make it necessary the use of a wide range of experimental data since multiple
solutions may be found for the fit. Therefore, one needs to be careful in deciding the level
of coarse-graining (i.e. the choice of parameter ms) and the subsequent parameter space
so as to avoid some physical inconsistencies such as a premature freezing (LOBANOVA
et al., 2015).

Lafitte et al. (2012) suggested that two correction factors (cσ and cε) should be
estimated with simulation data when using Eq. (3.84) for the ring contribution. They
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are related to the EoS parameters by scaled parameters:

σscaled = cσσ
SAFT . (3.91)

εscaled = cεε
SAFT . (3.92)

According to Lafitte et al. (2012), these corrections are necessary because the
approximations employed in the EoS theory generate discrepancies between molecular
simulations and the EoS for ring molecules modeled with Eq. (3.84). However, this new
parameterization is not necessary when using Eq. (3.85) as the ring contribution or when
we are modeling chain molecules with Eq. 3.81. This fact makes the strategy of Lafitte
et al. (2012) inconsistent since parameterization with molecular simulation should not
be necessary according to the overall idea of this force field. Furthermore, the use of
molecular simulation data highly increases the time spent on the parameterization
process. The objective function for the estimation of the correction parameter is given
by

Fobj =

Np∑
i=1

[
P sim
v (Ti, σ

SAFT , εSAFT )− P SAFT
v (Ti, σ

scaled, εscaled)

P sim
v (Ti, σSAFT , εSAFT )

]2

+

Np∑
i=1

[
ρsimliq (Ti, σ

SAFT , εSAFT )− ρSAFTliq (Ti, σ
scaled, εscaled)

ρsimliq (Ti, σSAFT , εSAFT )

]2

.

(3.93)

The repulsive parameter is maintained in the value found on the minimization
of Eq. (3.90). The refined values for σ and ε are

σsim = σSAFT/cσ, (3.94)

εsim = εSAFT/cε, (3.95)

The other method to obtain the force field parameters is the corresponding states
parametrization (MEJÍA et al., 2014). This method considers that the unweighted volume
average of the attractive contribution to the Mie intermolecular potential, a1, is the
following mean-field approximation

a1 = 2πρσ3εα. (3.96)
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The van der Waals constant, α, considering λa = 6 is related by the Mie exponents
by

α =
1

εσ3

∫ ∞
σ

φ(r)r2dr =
λr

3(λr − 3)

(
λr
6

)6/(λr−6)

. (3.97)

The parameterization in this method starts by using the experimental acentric
factor, ω, for each molecule with a fixed value of ms in order to obtain the value of the
repulsive exponent with the following Padé series:

λr =

∑
i=0 aiω

i

1 +
∑

i=1 biω
i
, (3.98)

where ai and bi are parameters that are dependent on the number of segments. A table
with these parameters is presented in the original paper (MEJÍA et al., 2014). The van
der Waals constant can be found by substituting λr into Eq. (3.97). The reduced critical
temperature T ∗c is related to α by a Padé series:

T ∗c =

∑
i=0 ciα

i

1 +
∑

i=1 diα
i
. (3.99)

The values of ci and di are also available in the original paper. The reduced
temperature of the equation above is used in conjunction with the experimental critical
temperature, Tc, to find the energy parameter with the relation below:

T ∗c =
κbTc
ε
. (3.100)

The diameter parameter, however, is not obtained with the critical properties,
but with the reduced liquid density at the reduced temperature of 0.7 (ρTr=0.7). This
density is also obtained with a Padé series using parameters by Mejía et al. (2014):

ρ∗Tr=0.7 =

∑
i=0 eiα

i

1 +
∑

i=1 fiα
i
. (3.101)

The coefficients ai, bi, ..., fi depend on the number of segments, and they are
available in the literature for ring and chain geometries (MÜLLER; MEJÍA, 2017; MEJÍA
et al., 2014). The relation between the Eq. 3.101, σ and the experimental density is given
by

ρ∗Tr=0.7 = ρTr=0.7σ
3Nav, (3.102)

where Nav is the Avogadro number. This corresponding states method has the advan-
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tage of only requiring critical data, which is available for a great range of fluids, and
liquid density data. The parameters obtained with these parameterization strategies are
available at a large online database for this force field (ERVIK et al., 2016b). Here, we
only show the coarse-grained geometries and the sets of parameters for the compounds
used in this dissertation. They are available in Tables 3.2.1 and 3.2.2. The parameters
for water were retrieved from Lobanova et al. (2016); for carbon dioxide, propane, and
hexane from Herdes et al. (2015); for 1-octanol from Ervik et al. (2016b); and for the
aromatic compounds from Müller and Mejía (2017).

Table 3.2.1 – Parameters of the SAFT-γ Mie force field for each substance used in this
work.

ms ε/κb (K) σ (Å) λr

Water 1 305.21 2.902 8.0
Carbon dioxide 2 194.94 2.848 14.65

Propane 1 426.08 4.871 34.29
Hexane 2 376.35 4.508 19.57

1-octanol 3 495.71 4.341 28.79
Toluene 3 268.24 3.685 11.80
Benzene 3 230.30 3.441 10.45
Pyrene 4 459.04 4.134 15.79

Anthracene 5 259.68 3.631 9.55

When modeling mixtures with this force field, it can be necessary to estimate the
binary interaction parameter kij of Eq. (3.89). This parameter is normally estimated by
minimizing the difference between experimental binary vapor-liquid equilibrium or
interfacial tension data and the SAFT-VR Mie EoS output data (MÜLLER; MEJÍA, 2017;
LOBANOVA et al., 2016). The objective function is similar to:

Fobj =

Np∑
k=1

(
P SAFT
v (Tk, x, kij)− P exp

v (Tk, x)

P exp
v (Tk, x)

)2

+

Np∑
k=1

(
ρSAFTl (Tk, x, kij)− ρexpl (Ti)

ρexpl (Ti)

)2

.

(3.103)

However, Ervik et al. (2016a) used molecular simulation results to fit the pa-
rameter to the interfacial tension data. The strategy they followed was to carry out
simulations in three values of kij first and, after, refine the parameter until a value in
good agreement with the experimental data is found. We decided to follow this strategy
in our estimations of kij since the estimation with the EoS did not provide satisfactory
results for the hydration free energy calculations.
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Table 3.2.2 – Coarse-grained geometries of the substances used in this work for the
SAFT-γ Mie force field.

Molecule Structure Coarse grained structure

Water

Carbon dioxide

Propane

Hexane

1-octanol

Toluene

Benzene

Pyrene

Anthracene

3.3 Solvation Free Energy Calculations Based on Molecu-

lar Dynamics

Using the SAFT-γ Mie Force Field described in the section above, we carried out
solvation free energy molecular dynamics simulations. The free energies we are trying
to calculate can be expressed as averages over ensembles of atomic configurations
generated using Monte Carlo or Molecular Dynamics techniques. In the canonical
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ensemble, the free energy is given by

F (N, V, T ) = −κbT lnQ(N, V, T ). (3.104)

Recall that Q(N, V, T ) is the partition function of the canonical ensemble, ex-
pressed as

Q(N, V, T ) =
1

h3NN !

∫
dpndrn exp

[
−β

(
N∑
i=1

p2
i

2mi

+ U(r1, .., rn)

)]
. (3.105)

The Gibbs free energy, the object of study in this dissertation, is given by

G(N,P, T ) = −κbT ln∆(N,P, T ), (3.106)

where ∆(N,P, T ) is the partition function of the isothermal-isobaric ensemble:

∆(N,P, T ) =
1

V0N !h3N

∫ ∞
0

dV

∫
dpndrn exp

[
−β

(
N∑
i=1

p2
i

2mi

+ U(r1, .., rn) + PV (r1, .., rn)

)]
.

(3.107)

Evaluating the partition function is an often unfeasible task, but we are interested
in calculating only the Gibbs free energy difference between two states of a system,
which is

∆GAB = GB −GA = −κbT ln
(

∆B

∆A

)
. (3.108)

Since the masses of particles in states A and B of a system are the same and the
Hamiltonian is separable in K(p) and U(r), the moment integrals in the ratio ∆B/∆A

can be simplified into the ratio of the configuration integrals:

ZB
ZA

=

∫∞
0
dV
∫
drn exp {−β [U(r1, .., rn) + PV (r1, .., rn)]B}∫∞

0
dV
∫
drn exp {−β [U(r1, .., rn) + PV (r1, .., rn)]A}

. (3.109)

This identity results in the following equation for the Gibbs free energy difference,
which does not require the calculation of the partition function at each state:

∆GAB = GB −GA = −κbT ln
(
ZB
ZA

)
. (3.110)
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In the case of a study concerning the solvation of a single molecule, the Gibbs
free energy difference between end states A and B are, more specifically, the difference
between the solute alone in the gas phase and the solute interacting with the solvent.
In order to have accurate results for free energy differences, the states need to have
sufficient overlap (KLIMOVICH et al., 2015). The overlap can be achieved by calculating
the free energy difference among a series of intermediates states. The result of these
differences is independent of the path chosen since free energy is a state function. That
is why alchemical states (without physical sense) can be used to link physical states of
interest. The solvation free energy calculations are then done through a thermodynamic
path in which the solute molecule is gradually inserted into the solvent as illustrated in
Figure 3.3.1. According to this path, the free energy of solvation is expressed as

∆Gsolv = ∆G1→4 = ∆G1→2 + ∆G2→3 + ∆G3→4 − κbT ln
V ∗

V 1
. (3.111)

Figure 3.3.1 – Thermodynamic path for computing solvation free energy of a single
solute molecule with molecular dynamics. Adapted from Klimovich et al.

(2015).

The last term in Eq. 3.111 accounts for the difference between the mean volume of
the simulation box with the solute inserted (V1) and the mean volume of the simulation
box with only solvent molecules in it (V ∗). However, Shirts et al. (2003) have shown
that this term is negligible with respect to the statistical uncertainty of calculating
∆G. In addition, when we have other solute molecules in solution, another term in
Eq. 3.111 may be necessary (SHIRTS et al., 2003). The term ∆G1→2, also represented in
Figure 3.3.1, is the solvation free energy associated with turning off the non bonded
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interactions of the molecule in the gas phase. In the next transformation, ∆G2→3 is the
free energy of moving the non-interacting molecule from the gas phase to the solvent
and is equal to zero since the transformation of a non-interacting molecule does not
depend on the environment. Lastly, ∆G3→4 is the free energy required for the non-
interaction molecule in the solvent phase to regain its non-bonded interactions with the
solvent. The solvation free energy calculation can be classified according to the types
of non-bonded interactions that are turned off/on in the 1→ 2 and 3→ 4 parts of the
path. If both non-bonded interactions with the environment and internal interactions
are turned off, this is an annihilation free energy calculation. On the other hand, if only
non-bonded interactions with the environment are turned off, this is a decoupling free
energy calculation (KLIMOVICH et al., 2015). In the latter case, ∆G1→2 = 0 and the
∆Gsolv = ∆G3→4.

The methods used to carry out the transformations of Figure 3.3.1 during the sim-
ulation scale the solute charges to zero and then turn off the interactions corresponding
to the Lennard-Jones or Mie potential. In order to carry out the latter process, a modified
potential with a coupling parameter (λ) is used. Each λ represents an alchemical state.
When λ = 0, there is no interaction with the solvent and, when λ = 1, interactions are
fully activated. The coupling of the λ parameter could be linear, as it is demonstrated in
Figure 3.3.2, but it could generate numerical problems related to the exponential part of
the potential (SHIRTS et al., 2003).

Figure 3.3.2 – Linear coupling of the potential energy, U linear
Mie = λUMie, for different

values of λ. Here, σ = 1, ε = 1, λa = 6, and λr = 8.
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Observing Figure 3.3.2, we can see that a linear coupling of the parameter would
cause an abrupt change in the potential energy when the λ reaches zero. That is the
reason the non-linear softcore scheme (BEUTLER et al., 1994) is used to couple the λ.
This scheme makes the potential behave more smoothly in relation to the change of λ.
The softcore potential is equal to

U sc
LJ(r) =4λε

{
1

[α(1− λ) + (r/σ)6]2
− 1

α(1− λ) + (r/σ)6

}
, (3.112)

where α is a constant whose value is normally assumed to be 0.5. Based on Eq. 3.112, we
propose a generalized softcore Mie potential for any value of λr and λa. It is given by:

U sc
Mie(r) =λε

λr
λr − λa

(
λr
λa

)( λa
λr−λa )

{
1

[α(1− λ) + (r/σ)λa ]λr/λa
− 1

α(1− λ) + (r/σ)λa

}
.

(3.113)

With the intention of observing the behavior of this generalized softcore potential,
we plotted the U sc

Mie(r) with repulsive exponents of different hardness/softness for a
range of values of λ in Figures 3.3.3 to 3.3.6. We see that this softcore scheme makes
the potential behave more smoothly in relation to the change of λ, mainly for the softer
repulsive exponents.

Figure 3.3.3 – Generalized softcore Mie potential, Eq. 3.113, for different values of λ.
Here, σ = 1, ε = 1, λa = 6, and λr = 8
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Figure 3.3.4 – Generalized softcore Mie potential, Eq. 3.113, for different values of λ.
Here, σ = 1, ε = 1, λa = 6, and λr = 15

Figure 3.3.5 – Generalized softcore Mie potential, Eq. 3.113, for different values of λ.
Here, σ = 1, ε = 1, λa = 6, and λr = 20
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Figure 3.3.6 – Generalized softcore Mie potential, Eq. 3.113, for different values of λ.
Here, σ = 1, ε = 1, λa = 6, and λr = 30

Now that we defined our coupled potential, we can then obtain the potential
energies related to each alchemical state by doing independent simulations in different
values of λ or by doing expanded ensemble simulations (LYUBARTSEV et al., 1992).
The latter was the method used in this dissertation, and it is described in Section
3.4. With the potential energies, the next step is to use post-processing methods, such
as the MBAR used in this study, to effectively calculate ∆G3→4. The solvation free
energies can then be used to calculate other properties such as the partition coefficient.
This property is a measure of the partitioning of one solute in two solvents (a and b)
with different physicochemical characteristics at a temperature T. It is defined by the
following equation when the activity coefficients are assumed to be one (ESSEX et al.,
1992):

P =
[solute]a
[solute]b

, (3.114)

where [solute]a and [solute]b are the concentration of the solute in the solvent a and b,
respectively. Since P is an equilibrium constant, it can be related to free energy change
associated with transferring the solute from the phase a to the phase b. Hence, we can
define the relation between the partition coefficient and the difference in free energy
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with the equation bellow (ESSEX et al., 1992):

2.303RT logP a/b = ∆Ga
solv −∆Gb

solv, (3.115)

where 2.303 is a conversion factor.

3.4 Expanded Ensemble Method

We decided to use the Expanded Ensemble method (LYUBARTSEV et al., 1992)
in our solvation free energy simulations since it allows a non-Boltzmann sampling
scheme of different states in a single simulation. Lyubartsev et al. (1992) initially pro-
posed in their paper a sampling scheme of different temperatures, but this idea can be
generalized to a sampling scheme of different states or λ′s (ESCOBEDO; MARTINEZ-
VERACOECHEA, 2007). In this scheme, the sampling is done by biasing the phase space
exploration process with weights not related to the statistical ensemble. The partition
function of the statistical expanded ensemble, ZEE , is obtained from the probability
distributions corresponding to each λ. Hence, ZEE is defined as a sum of subensembles
Zi in different values of λ, that is,

ZEE =
N∑
i=1

Zi(λi)exp(ηi), (3.116)

where N is the number of alchemical states, ηi is the arbitrary weight of the subensemble
at each state, and Zi is the configurational partition function of state i. For the isothermal-
isobaric ensemble, Zi is given by

Zi =
1

V0

∫ ∞
0

dV

∫
drn exp {−βi [U(λ, r1, .., rn) + PiV (r1, .., rn)]}. (3.117)

In solvation free energy calculations with molecular dynamics, λ corresponds
to the coupling parameter of the softcore potential (Eq. 3.112). Since we are carrying
out molecular dynamic simulations, the sampling of the expanded ensemble is done by
performing an arbitrary number of MD steps followed by a λ transition. Chodera and
Shirts (2011) proved that this type of sampling of the expanded ensemble is similar to
the Gibbs sampling method (GEMAN; GEMAN, 1984; LIU, 2002). Following the Gibbs
method, the sampling of the configuration space x for one state λk during the MD steps
is done by using the conditional distribution:

π(x|λk) =
exp[−βu(x, λk)]∫
dx exp[−βu(x, λk)]

. (3.118)
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The state transition in the MD simulation uses the following conditional distri-
bution:

π(λk|x) =
exp[−βu(x, λk) + ηk]∑K
k=1 exp[−βu(x, λk) + ηk]

, (3.119)

where u(x, λk) is the reduced potential function for the NPT ensemble. There is a variety
of acceptance schemes to do the expanded sampling using Eq. (3.119), but Chodera
and Shirts (2011) suggested that the independence sampling (LIU, 2002) is the best
strategy to increase the number of uncorrelated configurations. The implementation
they suggested consists of updating the state index from i to j by first generating a
uniform random number R on the interval [0, 1) and then selecting the smallest new
value of j that satisfies the relation

R <

j∑
i=1

π(λi|x). (3.120)

The sampling strategy above depends on a proper selection of weights in order
to guarantee an adequate sampling of the states. If there is not a sufficient number of
visits to each state, the expanded ensemble becomes deficient in obtaining input data
to estimate free energy differences with the methods exposed in Section 2.4. Here, we
followed the flat-histogram approach (BERG; NEUHAUS, 1992; LEE, 1993; DAYAL et
al., 2004) to calculate the weights. This strategy aims to obtain adequate sampling by
ensuring that all the states have an equal number of visits, i.e., the ratio of the probability
of sampling state i (πi) to the probability of sampling state j (πj) is equal to one. Given
that πi is equal to:

πi =
Zi(λi)exp(ηi)

ZEE
, (3.121)

Substituting Eq. 3.110 in Eq. 3.121, the following relation can be obtained for
πi/πj = 1:

(ηi − ηj) = β(Gi −Gj). (3.122)

Eq. (3.122) proposes that the choice of the weights is dependent on the free
energies that we are attempting to obtain. This equation is then solved iteratively
with trial simulations. For the first simulation, the values of η are set to zero, and the
histogram of the states visited is obtained. With this histogram, it is possible to estimate
the free energy differences and, since the weights are related to the free energies by Eq.
(3.122), the next values of η can be calculated. This iteration goes on until a uniform
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distribution is attained. The weights found are then used in a longer simulation to
obtain the final solvation free energies.

The choice of the λ set corresponding to overlapping alchemical states are cru-
cial to acquire accurate solvation free energies. In this work, the method chosen to
obtain the optimal staging of the λ domain is the one developed by Escobedo and
Martinez-Veracoechea (2007) with a basis in the study of Katzgraber et al. (2006). This
method targets "bottlenecks" in the simulation. It does that by optimizing λ through the
minimization of the number of round trips per CPU time between the lowest (0) and
highest (1) values of λ. This is specifically done by maximizing the steady-state flow φ

of the simulation, which "walks" among the values of λ. This flow is estimated from a
Fick’s diffusion type of law:

φ = D(Λ)Π(Λ)
dx(Λ)

dΛ
. (3.123)

In the equation above, Λ is the actual continuous value of the coupling parameter.
This continuous function of λ′s is obtained by interpolating the λ set linearly. D(Λ) is
the diffusivity at state Λ and x(Λ) is the fraction of times that the trial simulation at state
Λi has most recently visited the state λ = 1 as opposed to state λ = 0. The derivative
dx(Λ)/dΛ is approximated with the central finite differences method. Finally, Π(Λ) is
the probability of visiting Λ:

Π(Λ) =
C
′
Π̄(λ)

Λi+1 − Λi

. (3.124)

TheC ′ term in the equation above represents a constant and Π̄(λ) is the arithmetic
average of the frequency of visits to the Λ state:

Π̄i(λ) =
πi+1 − πi

2
. (3.125)

The φ is maximum when the optimal probability Π
′
(Λi) of visiting state Λi is

proportional to 1/
√
D(Λ) (TREBST et al., 2004). With that information, it is possible to

estimate the diffusivity using one trial simulation with the following equation:

D(Λ) =
Λi+1 − Λi

Π̄(λ)dx(Λ)/dΛ
, Λi < Λ < Λi+1. (3.126)

Hence, we can calculate Π̄ and, consequently, the cumulative probability (Φ), which is
used to obtain the new λ states by

Φ =

∫ λ=1

λ=0

Π
′
(Λi)dΛ =

i

K
, (3.127)
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where K is the total number of λ states. In order to carry out our solvation free energy
simulations, we obtained these cumulative probabilities for every λ set we estimated. A
graphical demonstration of the relation between the optimized coupling parameters
and the cumulative probability of Eq. 3.127 is presented in Figure 3.4.1.

Figure 3.4.1 – Relation between the optimized coupling parameters and the cumulative
probability used to obtain them.

3.5 Multistate Bennett Acceptance Ratio (MBAR)

We presented in the sections above the methods used to obtain the total potential
energies of each alchemical state with molecular dynamics, and, in this section, we
are going to discuss the methodology utilized to estimate the solvation free energies
with these data. The MBAR method (SHIRTS; CHODERA, 2008) is based on the free
energy perturbation. It is a maximum likelihood method which computes free energies
and their uncertainties of all K states by minimizing the K × K matrix of variances
for a simulation with Nj uncorrelated samples in equilibrium. For each of the {xi,n}Nin=1

configurations of i, the following probability distributions are sampled:

pi(x) =
qi(x)

ci
, (3.128)

ci =

∫
dxqi(x), (3.129)
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where qi(x) = exp[−ui(x)] and ui is the reduced potential energy of each state, defined
for a an alchemical transformation by ui(x) = βi[Ui(x)]. In addition, ci is a normalization
constant. The free energies are estimated from the ratio of this constant in each state,
since

∆fij = fi − fj = − ln
cj
ci

= − ln

∫
dxqj(x)∫
dxqi(x)

. (3.130)

Shirts and Chodera (2008) then proposed the following arbitrary function:

ci〈αijqj〉i = cj〈αijqi〉j. (3.131)

Using the equation above for every state K, the following relation is obtained:

K∑
j=1

ĉi
Ni

Ni∑
n=1

αijqj(xi,n) =
K∑
j=1

ĉj
Nj

Nj∑
n=1

αijqi(xj,n). (3.132)

Shirts and Chodera (2008) suggested the following equation for the arbitrary
term αij in order to minimize the variance:

αij(x) =
Nj ĉi

−1∑K
k=1Nkc

−1
i qk(x)

. (3.133)

Assuming that the sampling is carried out following Boltzmann statistics, Eqs.
(3.132) and (3.133) can be rearranged to obtain the free energy estimator, which is solved
self consistently:

fi = −ln
K∑
k=1

Nk∑
n=1

exp[−ui(xkn)]∑K
l=1Nl exp{[fl − ul(xkn)]}

. (3.134)

The equation above requires the evaluation of the potential energy of every
uncorrelated configuration n for all K states [ui(xkn)] and for all uncorrelated configu-
ration snapshots (Nk) from state k. With the free energies, we compute the free energy
differences between states with Eq. 3.130. The uncertainty resulting from free energy
estimation can be computed by the covariance matrix (s):

δ2
ij∆fij = sii + sjj − 2sij. (3.135)

The MBAR method explained here can be considered as a limiting case of the
Weighted Histogram Analysis Method (WHAM) (KUMAR et al., 1992) for computing
free energies. WHAM equations become equal to Eq. (3.134) if the histogram width
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tends to zero. Despite this, the MBAR is still more suited than the WHAM because it
does not have the bias associated with the discretization and allows the calculation of
an error estimate (SHIRTS; CHODERA, 2008).

3.6 Gibbs Ensemble Monte Carlo (GEMC)

In the initial steps of this research, we estimated the SAFT-γ Mie force field
parameters of phenanthrene with the methodology proposed by Lafitte et al. (2012). This
approach required liquid-vapor equilibrium data obtained with molecular simulation,
as it is described in Section 3.2.2. Hence, we carried out Monte Carlo simulations at the
Gibbs Ensemble (PANAGIOTOPOULOS, 1987) since this ensemble is commonly used
to study phase coexistence with molecular simulation. In addition to that, this method
does not use an explicit interface, which can hinder the determination of bulk phase
behavior of small systems with long-range interactions (RAI; MAGINN, 2012).

Before talking in more detail about this ensemble, we are going to discourse on
Monte Carlo simulations briefly. The Monte Carlo (MC) approach is another method
for generating atomic trajectories in order to obtain macroscopic properties. Rather
than using the numerical integration of Newton’s equations of motion, the trajectories
are obtained stochastically in the Monte Carlo approach. The positions are evolved
by random moves or perturbations (MC steps) acquired with the Metropolis method
(METROPOLIS et al., 1953). Hence, the trajectories are not predictable from the set of
initial positions. The Metropolis method is a Markov process, that is, a stochastic process
in which the configurations change randomly with time and only depends on the states
and their directly preceding states, but not on the previous configurations (RAABE,
2017). The random move is constructed in such a way that the probability of visiting a
particular point rN is proportional to the Boltzmann factor exp[−βU(rN)] (FRENKEL;
SMIT, 2001). The construction of a particle displacement according to Metropolis et al.
(1953) can be briefly summed up as:

1. Pick a random particle, and calculate its energy U(rN).

2. Perturb the particle by randomly displacing it, r′ = r + ∆r. Where ∆r is
a perturbation randomly chosen from a defined interval of maximum displacement
([−δmax, δmax]). Calculate the energy with the new positions U(r′N).

3. Accept the move from rN to r′N with the probability:

accA→B = min{1, exp[−βU(r′N) + βU(rN)]}. (3.136)

The values of maximum displacement are defined iteratively in order to obtain
acceptance rates of 25-50% in step 3 (FRENKEL, 2013). Monte Carlo simulations are
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interesting when we need to calculate properties in different thermodynamic ensembles,
such as the Gibbs Ensemble used in this dissertation. The phase coexistence at this
ensemble is obtained with simultaneous Monte Carlo (MC) simulations of two boxes
with periodic boundary conditions, representing a two-phase system. The boxes ex-
change molecules, energy, and volume between them. Equilibrium is obtained through
MC steps that consist of translation and rotation moves, volume exchange moves, and
random exchanges of molecules between the boxes. For the phase equilibrium of multi-
component systems, the GEMC simulations should be carried out at the NPT (constant
number of particles, pressure, and temperature) ensemble to obey the requirement of an
additional degree of freedom for mixtures. In turn, the simulation of single component
systems is carried out at a constant number of particles, temperature, and volume
(NVT) since the two-phase region would be a line for this system at constant pressure
and temperature (FRENKEL; SMIT, 2001). The partition function of the GEMC-NVT
ensemble is obtained by considering that the particles in both boxes are subjected to
the same intermolecular interactions. Also, volumes and number of particles of the box
(N1,N2,V1 and V2) can vary while the total volume (V ) and the total number of particles
(N ) remain constant (N = N1 +N2,V = V1 + V2). Therefore, the partition function is

Q(NV T ) ≡
N∑
N1

1

V Λ3NN1!(N −N1)!

∫ V

0

V N1
1 V N2

2 dV1∫
exp[−βU(xN1

1 )]dxN1
1

∫
exp[−βU(xN2

2 )]dxN2
2 .

(3.137)

In order to define the acceptance rules for the MC moves and compute any
property of interest, it is necessary to know the probability of finding the configuration
with N1 particles in box 1 with volume V1 and positions xN1

1 and xN2
2 . This probability is

given by:

π(xN1
1 , xN2

2 , N1, N2, V1, V2) ∝ V N1
1 V N2

2

N1!N2!
exp[−βU(xN1

1 ) + βU(xN2
2 )]. (3.138)

The acceptance criterion for the translation and rotation moves from configura-
tion A to configuration B is similar to the conventional NVT MC method and is equal
to:

accA→B = min{1, exp[βU(xN1
A )− βU(xN1

B )]}. (3.139)

The volume exchange moves take place by exchanging an amount ∆V between
the boxes to achieve pressure equilibrium. ∆V can be chosen from a uniform distribution
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based on the maximum variation of volume (δVmax) defined with probability 1/δVmax

(FRENKEL; SMIT, 2001). The acceptance rule for these moves is:

accA→B = min

{
1,

(
V B

1

V A
1

)N1+1(
V B

2

V A
2

)N2+1

exp[βU(xNA )− βU(xNB )]

}
. (3.140)

Particle exchange moves are carried out to obtain the equality of chemical po-
tential between the boxes. One particle from one box is removed and then added to a
random location in the other box. The criteria to accept or reject this type of move is:

accA→B = min

{
1,

N1V2

(N2 + 1)V1

exp[βU(xNA )− βU(xNB )]

}
. (3.141)

This method has been widely used to calculate phase equilibrium, but its perfor-
mance is poor for the region near the critical point due to large density fluctuations. The
GEMC method also has poor performance for dense systems since the particle exchange
moves have a low acceptance rate (WESTMORELAND et al., 2002).



4 Methodology

In this study, we had first to obtain the parameters of phenanthrene using
an equation for rings for the SAFT-γ Mie force field since these parameters were not
available on this force field database (ERVIK et al., 2016b). Hence, we divided this chapter
into two sections. The first one describes how we parametrized the phenanthrene
molecule with the SAFT-γ Mie force field and the second one explains how we carried
out the solvation free energy simulations.

4.1 Phenanthrene Parameterization

We implemented the two parameterization strategies for molecules with aromatic
rings described in Section 3.2.2 for phenanthrene. For both of them, only vapor pressure
data (MORTIMER; MURPHY, 1923; OSBORN; DOUSLIN, 1975) were used due to the
unavailability of saturated liquid density. We did not estimate the attractive exponent,
λa. Instead, the value of six was given to it, as recommended by Ramrattan et al. (2015)
and Herdes et al. (2015), due to its high correlation with the repulsive exponent. The
parameterization with the ring equation of Müller and Mejía (2017) was carried out with
the number of segments equal to five and with a geometry such as that in Figure 4.1.1,
since this level of coarse-graining was also used for a similar molecule (anthracene) in
the original paper.

Figure 4.1.1 – Representation of phenanthrene with the geometry proposed by Müller
and Mejía (2017).

The minimization was done using the Particle Swarm Optimization (PSO)
method (SCHWAAB et al., 2008) with 50 particles and 50 interactions. The objective
function used was equal to

Fobj =

Np∑
i=1

[
P SAFT
v (Ti, σ, ε, λr)− P exp

v (Ti)

P exp
v (Ti)

]2

. (4.1)

Here, P exp
v is the experimental vapor pressure and P SAFT

v is the vapor pressure
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obtained with the SAFT-VR Mie EoS. According to the fundamental thermodynamic
equation, the vapor pressure is given by

P SAFT
v = −∂A

SAFT

∂V
(4.2)

This derivative and all the derivatives required to calculate ASAFT , such as the
ones in Eqs. A.24 and A.26, were obtained numerically with the finite difference method.
The routine used to calculate the bubble point with the EoS was the one proposed by
Smith et al. (2007). The parameters (σ, ε, and λr) from the minimization of the objective
function in Eq. (4.1) are the final force field parameters used in molecular simulations.

The parameterization with the ring equation the Lafitte et al. (2012) was carried
out with ms = 3, so that every bead would represent one aromatic ring, as depicted in
Figure 4.1.2.

Figure 4.1.2 – Representation of phenanthrene with the geometry proposed by Lafitte et
al. (2012).

The first part of the estimation followed the same procedure described above for
the Müller and Mejía (2017) equation. However, as explained in Section 3.2.2, the Lafitte
et al. (2012) equation requires the estimation of correction factors cσ and cε (Eqs. (3.91)
and (3.92)). We then estimated these parameters by using the PSO method with Eq.
(3.93). In this equation, vapor pressures and saturated liquid densities from molecular
simulations are required. We then decided to use the Gibbs Ensemble Monte Carlo
method on the NVT ensemble, explained in Section 3.6, to obtain these equilibrium
properties at eight different temperatures.

The boxes for the GEMC-NVT simulations were generated by inserting 400
molecules of phenanthrene into one liquid box and 100 molecules of phenanthrene into
one vapor box using the Playmol package (ABREU, 2017), which is integrated with
the Packmol package (MARTÍNEZ et al., 2009). Initial densities of each box were made
equal to the saturated densities found with the SAFT-VR Mie Eos, aiming at avoiding
the migration of all molecules to a single phase during the simulation. The GEMC-NVT
simulations were executed using the Cassandra software (SHAH; MAGINN, 2011),
which was developed to perform Monte Carlo simulations. The equilibration and
production times lasted around 104 and 5× 104 MC cycles, respectively. Each MC cycle
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corresponded to 103 rotation trials, 103 translation trials, 102 molecule insertion trials,
102 molecule deletion trials, and 10 volume exchange trials. The cut-off distance was
equal to 20 Å and we did not use long-range interactions. The saturated vapor density
(ρvap), the saturated liquid density (ρliq), and the vapor pressure (Pv) were sampled at
each 100 MC cycles. Later on, these data were divided into five blocks for calculation
of their averages and standard deviations. With the correction factors found after the
estimation with the simulation data, we calculated, with Eqs. (3.94) and (3.95), the σ
and ε parameters. Lafitte et al. (2012) proposes that these are the final parameters to be
used in molecular simulations. Hence, an iterative simulation is not required, and the
set of optimal parameters can be obtained with one group of molecular simulations.

4.2 Solvation Free Energy Simulations

Using the parameters for phenanthrene estimated with the Müller and Mejía
(2017) approach and the SAFT-γ Mie force field parameters available for other com-
pounds, we carried out molecular dynamics simulations to estimate the solvation
free energies. The chosen software package to perform the simulations was LAMMPS
(PLIMPTON, 1995). In this package, the equations of motion were integrated with
the velocity-Verlet algorithm (VERLET, 1967) with a time step of 2 fs. As required by
the coarse-grained model, molecules with more than one bead were treated as rigid
bodies. The thermostat and the barostat were the Nosé-Hoover chains as described in
Hoover (1985), Martyna et al. (1992), and Martyna et al. (1994) with damping factors
of 100 and 1000 time steps, respectively. For the rigid bodies in our simulations, we
used the rigid-body algorithm of Kamberaj et al. (2005). Electrostatics interactions are
not explicitly accounted for by the SAFT-γ Mie force field. Hence, we did not compute
Coulombic interactions. The potential cutoff was equal to 20 Å (MÜLLER; MEJÍA,
2017) with a neighbor list skin of 2 Å. The initial configurations of the solvated systems
were also generated using the Playmol package, which is integrated with the Packmol
package. For the binary mixtures, one molecule of solute and a varying number of
solvent molecules- 700 molecules of toluene, 700 molecules of octanol, 1024 molecules
of hexane, 3000 molecules of water - were randomly added to a cubic box. Besides
the systems with pure substances acting as solvents, we performed simulations to
study the solvation free energy of phenanthrene in a mixture of toluene and carbon
dioxide with different weight fractions (wCO2). The system consisted of one molecule of
phenanthrene for all the cases and 123 molecules of CO2 and 618 molecules of toluene
(wCO2 = 0.087); 166 molecules of CO2 and 589 molecules of toluene (wCO2 = 0.119);
232 molecules of CO2 and 545 molecules of toluene (wCO2 = 0.169); 380 molecules of
CO2 and 446 molecules of toluene (wCO2 = 0.289). These substances used in our study
were selected with the intention of testing the force field with standard sets used as
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a benchmark in solvation free energy calculations, with aromatic substances used as
models to asphaltenes and with water, which probably is the most used solvent in
computational studies of solvation free energies.

All simulations were performed with the constant temperature and pressure
values of 298 K and 1 bar, except the ones containing carbon dioxide. These had the
temperature of 298 K and the pressure of the experimental liquid-phase equilibrium
corresponding to each composition of the system CO2+toluene (CHANG, 1992). For
all simulations, the initial box was equilibrated at the NPT ensemble for 2 ns, and the
resulting configurations were used as the initial configuration of the expanded ensemble
simulations. These were carried out with the LAMMPS user package for expanded
ensemble simulations with the Mie potential developed by our research group, available
at https://github.com/atoms-ufrj/USER-ALCHEMICAL.

During these expanded ensemble simulations, the sampling of a new alchemical
state was tried at every 10 MD steps. To define the optimal values of λ and η corre-
sponding to each state, trial simulations, having around 9 ns of production time, were
carried out. In the first simulation, we chose the group of λ values arbitrarily, and we
either set all η′s to zero or assigned values previously found for similar solute-solvent
pairs. The subsequent group of η′s were estimated with the flat histogram approach (Eq.
(3.122)). We then performed another trial simulation with the new weights. The results
of this simulation were used to optimize the group of λ′s by minimizing the number of
round trips, as described in Section 3.4. The η′s corresponding to the newest group of
λ′s were interpolated linearly from the free energy differences. With the final values of
η and λ defined for each mixture, larger simulations with a production time of 20 ns
were carried out.

Since the employed force field considers that the beads do not have charges, there
are no Coulombic interactions and the ∆G in Eq. (3.111) becomes equal to ∆G3→4. The
post-processing method used to effectively calculate free energy differences with the
potential energies obtained from the expanded ensemble simulations was the Multistate
Bennett Acceptance Ratio (MBAR) method, described in Section 3.5. The software
alchemical-analysis (KLIMOVICH et al., 2015) was utilized to obtain the ∆Gsolv with
MBAR and to assess the quality of the results. After the first estimations, we realized
that the binary interaction parameter of Eq. (3.89) was necessary for systems containing
water. Hence, we estimated kij for these pairs and, for all the other pairs, we set kij to
zero. The estimation was done by performing trial expanded ensemble simulations in
three values of kij , as suggested by Ervik et al. (2016a). With the ∆Gsolv obtained with
these simulations, we did a linear fit to obtain the refined value of the parameter. We
used this strategy because the estimation with SAFT-VR Mie EoS gave poor results for
the hydration free energies.



5 Results and Discussion

5.1 Phenanthrene parameterization

The first part of this work consisted in obtaining phenanthrene parameters for
the SAFT-γ Mie Force Field as described in Section 4.1. This part was necessary since
these parameters were not available for the ring geometry on the force field database
(ERVIK et al., 2016b). We carried out this parameterization using the free energy of
Helmholtz equations for rings of (LAFITTE et al., 2012), Eq. 3.84, and of (MÜLLER;
MEJÍA, 2017), Eq. 3.85. The parameters obtained with these two strategies and the
mean percentage error (MPE) to the experimental data (MORTIMER; MURPHY, 1923;
OSBORN; DOUSLIN, 1975) were those observed in Table 5.1.1.

Table 5.1.1 – Estimated SAFT-γ Mie force field parameters for phenanthrene.

ms ε/κb (K) σ (Å) λr MPE(%)
3 (LAFITTE et al., 2012) 485.55 4.197 14.34 1.48|9.74

5 (MÜLLER; MEJÍA, 2017) 262.74 4.077 9.55 0.88

The MPE value of 1.64 for the Lafitte et al. (2012) strategy in the Table 5.1.1 is the
error between the vapor pressure calculated with the equation of state and the experi-
mental data. The second MPE value for the Lafitte et al. (2012) strategy (9.74) is the error
between the vapor pressure calculated with the equation of state and the vapor pressure
obtained in the GEMC simulations. We also show, in Figure 5.1.1, the vapor pressure
curve obtained using the EoS with the two Helmholtz free energy equations for rings. It
is clear, observing the figure mentioned above and the MPE values for both equations
for rings, that both approaches for the EoS performed very similarly and were able to
reproduce the experimental data. However, the parameters estimated with the equation
of Lafitte et al. (2012) could not be directly transferred to molecular simulations because
this strategy needs an estimation with molecular simulation. This additional procedure
is not necessary when estimating parameters for the chain equation (AVENDAÑO et al.,
2011) or the ring equation of Müller and Mejía (2017). In addition to that, this use of
molecular simulation data to acquire the parameters negates the overall idea proposed
by (AVENDAÑO et al., 2011). They developed this force field with the intention of
obtaining the parameters in a more straightforward way than other force fields since
the SAFT-γ Mie model would not have the computational time associated with doing
molecular simulations in its parameterization. Due to these specific characteristics of the
model of Lafitte et al. (2012), we only studied the solvation free energy of phenanthrene
with the set of parameters estimated with the strategy of Müller and Mejía (2017). In
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fact, we only followed the approach of Lafitte et al. (2012) because it was the only one
available when we first started this research. The sets of parameters and geometries
for the other compounds were retrieved from the literature, and they are displayed in
Tables 3.2.1 and 3.2.2.

Figure 5.1.1 – Vapor pressure (Pv) of phenanthrene calculated with the two strategies of
the SAFT-VR Mie EoS for modeling molecules formed by rings.

5.2 Solvation free energies

Our primary intention with this study is to assess the capability of the SAFT-γ
Mie force field to represent solvation free energies. Hence, we chose benchmark solutes
used in the literature (benzene, propane) and polyaromatic solutes (pyrene, phenan-
threne, and anthracene), and, for the solvents, we picked non-polar (hexane), aromatic
(toluene), and hydrogen bonding (1-octanol, water) substances. It would be interesting
to do a study with a bigger database of pairs solvent-solute. However, the time required
for performing each of the solvation free energy simulations, some difficulties related to
the available computational structure, and the fact that a better model of aromatic com-
pounds with this force field was only published in the middle of our study prevented us
from doing a more extensive study. The solvation free energy simulations for the pairs
chosen were carried out with binary interaction parameters equal to zero since these
parameters were not necessary according to our preliminary studies. Since the force
field does not account for charges, we only calculated the Mie contribution (Eq. (3.113))
to the solvation free energy. A total of 15 to 18 λ′s, depending on the solute-solvent
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pairs, and their respective η′s were estimated as described in Sections 3.4 and 4.2. The
simulations carried out using these optimized weights deviated from the requirement
of equal number visits by an average of 5% for all of the solvent+solute pairs. The final λ
set for all the pairs was found using the cumulative probability distribution (Eq. (3.127)).
The probability distribution for the hexane(solvent)+benzene(solute) pair can be seen
in Figure 5.2.1. From now on we are going to use the terminology solvent+solute. The
optimized values of λ and η for this pair and all the other pairs are available in Tables
5.2.1 to 5.2.4. By observing the coupling parameters found for all the pairs, we can see
that they are concentrated on the region with a steeper slope as it is expected in this
method.

Figure 5.2.1 – Cumulative probability used to obtain the optimized values of λ′s for the
pair hexane+benzene.
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Table 5.2.1 – Optimized values of λ and η for the hexane+solute pairs.

benzene pyrene phenanthrene
λ η λ η λ η

0.000 0.000 0.000 0.000 0.000 0.000
0.065 0.708 0.076 4.234 0.090 1.981
0.112 1.385 0.107 5.620 0.132 3.461
0.15 1.892 0.132 6.499 0.161 4.494

0.188 2.399 0.152 6.690 0.185 5.185
0.226 2.519 0.170 6.643 0.205 5.552
0.264 2.457 0.189 6.461 0.224 5.725
0.304 2.367 0.213 6.091 0.244 5.722
0.356 1.921 0.242 5.566 0.268 5.523
0.411 1.411 0.280 4.729 0.305 4.975
0.492 0.524 0.355 2.853 0.372 3.576
0.588 -0.663 0.483 -0.778 0.500 0.297
0.69 -2.016 0.678 -6.947 0.560 -1.390

0.824 -3.922 0.788 -10.631 0.722 -6.309
1.000 -6.583 1.000 -18.141 1.000 -15.448

Table 5.2.2 – Optimized values of λ and η for the 1-octanol+solute pairs.

propane anthracene phenanthrene
λ η λ η λ η

0.000 0.000 0.000 0.000 0.000 0.000
0.027 3.126 0.078 3.932 0.049 2.578
0.050 5.109 0.111 6.178 0.091 5.663
0.073 6.093 0.130 7.426 0.125 8.575
0.095 6.570 0.143 8.201 0.144 10.069
0.117 6.826 0.154 8.717 0.157 10.978
0.142 6.956 0.164 9.085 0.169 11.599
0.174 6.969 0.174 9.357 0.180 12.040
0.215 6.847 0.184 9.556 0.192 12.340
0.269 6.554 0.197 9.676 0.206 12.499
0.337 6.050 0.214 9.681 0.225 12.478
0.427 5.228 0.238 9.490 0.253 12.161
0.545 3.955 0.274 8.958 0.298 11.280
0.720 1.843 0.326 7.906 0.371 9.406
1.000 -1.903 0.399 6.088 0.484 5.891

0.515 2.777 0.664 -0.516
0.695 -2.960 0.802 -5.908
1.000 -13.768 1.000 -14.073
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Table 5.2.3 – Optimized values of λ and η for the toluene+solute pairs.

pyrene anthracene phenanthrene
λ η λ η λ η

0.000 0.000 0.000 0.000 0.000 0.000
0.090 2.563 0.119 0.218 0.136 0.726
0.130 4.338 0.174 1.210 0.191 2.307
0.154 5.439 0.209 2.052 0.223 3.430
0.172 6.181 0.236 2.664 0.246 4.233
0.188 6.670 0.261 3.122 0.264 4.780
0.204 6.986 0.283 3.378 0.281 5.149
0.222 7.121 0.306 3.449 0.299 5.354
0.244 7.025 0.332 3.311 0.318 5.389
0.278 6.520 0.360 2.936 0.340 5.222
0.340 5.010 0.399 2.209 0.372 4.717
0.462 1.247 0.466 0.567 0.425 3.440
0.616 -4.283 0.564 -2.211 0.524 0.444
0.788 -11.032 0.715 -6.983 0.701 -5.814
1.000 -19.814 1.000 -16.923 1.000 -17.803

Table 5.2.4 – Optimized values of λ and η for the phenanthrene+CO2+ toluene mixture
with different values of wCO2 .

wCO2 = 0.087 wCO2 = 0.119 wCO2 = 0.169 wCO2 = 0.289

λ η λ η λ η λ η

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.128 0.604 0.128 0.732 0.064 0.883 0.066 0.806
0.184 2.067 0.186 2.223 0.108 0.764 0.111 0.760
0.217 3.164 0.219 3.319 0.175 1.969 0.172 1.983
0.240 3.940 0.244 4.098 0.214 3.156 0.204 2.967
0.260 4.472 0.267 4.704 0.240 3.974 0.227 3.627
0.277 4.823 0.289 5.031 0.258 4.457 0.245 4.082
0.295 5.035 0.313 5.084 0.273 4.750 0.262 4.395
0.318 5.059 0.339 4.950 0.287 4.921 0.279 4.583
0.347 4.762 0.373 4.371 0.305 4.962 0.299 4.621
0.397 3.753 0.425 3.055 0.326 4.885 0.325 4.423
0.491 1.031 0.488 1.196 0.361 4.401 0.365 3.739
0.670 -5.148 0.525 -0.027 0.419 2.990 0.428 2.198
0.791 -9.713 0.730 -7.185 0.527 -0.299 0.530 -0.842
1.000 -18.098 1.000 -17.769 0.697 -6.180 0.701 -6.763

1.000 -17.998 1.000 -18.163
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It is also essential to analyze the reliability of solvation free energy estimations
through the overlapping of the intermediate states. Insufficient overlap among states
when using FEP based methods such as MBAR may result in the underestimation of vari-
ance and, consequently, in substantially incorrect solvation free energies (KLIMOVICH
et al., 2015). The overlap matrix for the solvation free energy of benzene in hexane
is presented in Figure 5.2.2 and the matrices for the other pairs are available in Ap-
pendix B. Each element ij of these matrices is the average probability of observing a
configuration sampled from state i in state j. As an example, the average probability of
finding a configuration sampled from state 3 in state 4 is 0.11 in Figure 5.2.2. Accord-
ing to Klimovich et al. (2015), a tridiagonal overlap matrix is an indication of reliable
free energy estimates, as long as the resulting error is sufficiently low. They define a
tridiagonal matrix as one matrix with elements appreciably different from zero (the
values should be as low as 0.03) in the main diagonal and the first diagonals above and
below the main one. This requirement was met for all the pairs in our study. Some of
the overlap matrices, including the one in Figure 5.2.2, had more than three diagonals,
and, consequently, an apparent unnecessary number of intermediate states. However,
this number of intermediate states was indispensable in our study because the error
estimate of the solvation free energies significantly increased when we removed some
of the intermediate states. Hence, we maintained these intermediate states in order to
obtain low error values. After this analysis, we present in Table 5.2.5 the results for
solvation free energy calculations, the errors from these estimations with MBAR, and
the absolute deviations from experimental data (KATRITZKY et al., 2003).

Table 5.2.5 – Calculated and experimental values for the solvation free energies
(kcal/mol) of solutes in non-aqueous solvents.

Solute Solvent ∆Gexp
solv ∆GMie

solv Absolute
Deviation

benzene hexane -3.96 -3.76 ± 0.01 0.20
pyrene hexane -11.53 -10.82 ± 0.02 0.71

phenanthrene hexane -10.01 -9.16 ± 0.01 0.85
propane 1-octanol -1.32 -1.36 ± 0.03 0.04

anthracene 1-octanol -11.72 -8.12 ± 0.03 3.61
phenanthrene 1-octanol -10.22 -8.34 ± 0.03 1.47

pyrene toluene -12.86 -11.74 ± 0.01 1.11
anthracene toluene -11.31 -9.90 ± 0.01 1.41
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Figure 5.2.2 – Overlap matrix for hexane+benzene.

The numerical values for solvation free energies in hexane had overall smaller
absolute deviations from experimental data than the deviations in the other solvents.
Additionally, this force field presented better results for the pair hexane+benzene than
the TraPPE force field (- 4.35 ± 0.05 kcal/mol) (GARRIDO et al., 2011) and the ELBA
coarse-grained force field (-2.92 ± 0.01 kcal/mol) (GENHEDEN, 2016). TraPPE is a
force field parametrized with fluid-phase equilibria data that uses the Lennard-Jones
potential to describe the non-bonded interactions. In the cited paper, they used the
united-atom description of the TraPPE force field for the alkyl group, the all-atom
description for the polar groups and the explicit-hydrogen approach for the aromatic
groups. In the explicit-hydrogen approach, the interaction sites for all hydrogen atoms,
some lone pair electrons, and bond centers are accounted for (RAI; SIEPMANN, 2007).
In turn, the ELBA force field is a coarse-grained model that comprises six independent
parameters. This force field models three carbons as one Lennard-Jones site and one
water molecule as a single Lennard-Jones site with a point dipole. We also present
the solvation free energies corresponding to each alchemical state (λ) for all the pairs
studied here in Figures 5.2.3 to 5.2.5. In these figures, we did not represent the errors
of the estimation with MBAR because they were too small. Specifically observing the
solvation free energy in hexane (Figure 5.2.3), we can see the effect of the molecule’s
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size on the entropic region of the free energy curve. This region corresponds to the first
values of λ where the cavity required for the insertion of the solute is formed.

We expected that a force field based on an EoS that does not explicitly account
for hydrogen bond would not perform well for 1-octanol in mixtures since the parame-
terization of this molecule did not explicitly account for the interactions of association.
All the beads representing 1-octanol have the same intermolecular parameter, and
there is no distinction between the polar and apolar groups. Despite this, the solvation
free energies of propane and phenanthrene in 1-octanol lied in the desired deviation
range of 1-2 kcal/mol (MOBLEY; GILSON, 2017). For propane, the observed devia-
tion in solvation free energies was much smaller when compared to the other solutes,
which can be attributed to the non-polarity of propane and its smoother free energy
curve, presented in Figure 5.2.4. Such solvation free energy of propane in 1-octanol
also had a smaller deviation than the prediction of the ELBA force field (-0.92 ± 0.01)
(GENHEDEN, 2016). The absolute deviation of the solvation free energy computed
for anthracene in 1-octanol is much higher than the one calculated for phenanthrene
in 1-octanol. The anthracene and phenanthrene molecules have the same geometry
(Figure 4.1.1) in the SAFT-γ Mie model, although anthracene is a linear molecule and
phenanthrene is not, and also similar physical properties. Hence, this high deviation
of the solvation free energy of anthracene in 1-octanol may indicate a problem in the
geometry chosen for anthracene in the SAFT-γ Mie force field and the importance of
the geometry in modeling the molecules with this force field.

Figure 5.2.3 – Representation of the solvation free energies of different solutes in
hexane estimated at each alchemical state.
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Figure 5.2.4 – Representation of solvation free energies of different solutes in 1-octanol
estimated at each alchemical state.

Figure 5.2.5 – Representation of solvation free energies of different solutes in toluene
estimated at each alchemical state.

The results also indicate a reasonable capability of the force field for predicting
the solvation free energies of polyaromatic solutes in aromatic solvents. The influence
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of the molecular geometry on the solvation free energy curves was the same as the
one observed for other solvents, as can be seen in Figure 5.2.5. We also calculated the
∆Gsolv for phenanthrene in pure toluene and in toluene+CO2 mixtures. To the best
of our knowledge, there are no available experimental data for these solvation free
energies, but the previous results for phenanthrene in other solvents showed that the
force field is adequate to describe the solvation phenomenon of phenanthrene in a pure
aromatic solvent. Hence, we decided to carry out a qualitative study of the influence of
CO2 in the solvation free energies of phenanthrene in toluene in order to evaluate the
description of this system with the SAFT-γ Mie force field. The results for these sets are
exposed in Table 5.2.6.

Table 5.2.6 – Calculated values for the solvation free energies (kcal/mol) of
phenanthrene in toluene+CO2.

wCO2 ∆GMie
solv

0.0 -10.65 ± 0.02
0.087 -10.73 ± 0.02
0.119 -10.78 ± 0.02
0.169 -10.71 ± 0.02
0.289 -10.69 ± 0.02

The increase of the mass fraction of CO2 in toluene caused a small effect on the
solvation free energies in the range of weight fractions (0.087-0.289) studied in this
dissertation. First, the ∆Gsolv decreased with the increase of wCO2 up to 0.119. After
this, the effect was reversed, and carbon dioxide became an anti-solvent. Soroush et al.
(2014) reported that asphaltene precipitation occurs when carbon dioxide mass fractions
became higher than 0.10 in the system asphaltene+toluene+carbon dioxide, which is
in agreement with the anti-solvent effect of carbon dioxide observed in the values
calculated here. In the Figure 5.2.6, we present the free energy profiles of the solvation
free energies in the toluene + CO2 mixtures. Although we noticed the anti-solvent
effect, the differences observed are pretty small. These minor differences may indicate
that the effect of CO2 is negligible in the solvation of phenanthrene in toluene when
using the SAFT-γ Mie force field to model the molecules. Nevertheless, more studies
need to be done to make a safe assertion about it. It is also worth remarking that this
is a qualitative study due to the lack of experimental data. Overall, the methodology
proposed by the SAFT-γ Mie force field was satisfactory in predicting the solvation free
energies of the pairs solvent-solute studied here. For the pair 1-octanol+anthracene,
the performance obtained was not as good as it was for the other pairs. This result
highlights the importance of choosing a correct geometry for this coarse-grained force
field.
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Figure 5.2.6 – Representation of solvation free energies of phenanthrene in
toluene+CO2 estimated at each alchemical state.

5.3 Hydration free energies

Water is a solvent extensively used in experimental and computational studies.
Because of this importance and the fact that water has unique properties, such as density
maximum at 277 K and increased diffusivity upon compression, developing an accurate
computational model for water is an ongoing quest (HADLEY; MCCABE, 2012). Hence,
we also calculated the solvation free energies in water (hydration free energies) with
the SAFT-γ Mie force field. With these calculations, we intend to verify if this coarse-
grained model would represent the water molecule correctly and would be a good
alternative to decrease the computational cost of solvation studies with asphaltene
models. The simulations with water as a solvent were carried out using widely studied
solutes (propane) and aromatic solutes (benzene, toluene, and phenanthrene) with
a set of fifteen intermediate states. We obtained these sets of λ and η with the same
methodology used to acquire the sets for the solvation free energies with non-aqueous
solvents, and they are exposed in Table 5.3.1. At first in our simulations, the binary
interaction parameters of all aqueous mixtures were set to zero, but preliminary results
for hydration free energies, displayed in Table 5.3.2, exhibited a high deviation from
experimental data (ABRAHAM et al., 1990; RIZZO et al., 2006).
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Table 5.3.1 – Optimized values of λ and η for the water+solute pairs.

propane benzene toluene phenanthrene
λ η λ η λ η λ η

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.107 2.673 0.193 -0.295 0.177 0.182 0.142 -2.462
0.157 4.703 0.279 1.468 0.262 2.432 0.256 0.597
0.186 6.047 0.324 2.931 0.307 4.244 0.319 4.504
0.210 7.148 0.357 4.168 0.336 5.552 0.358 7.762
0.230 8.017 0.381 5.091 0.360 6.696 0.384 10.104
0.250 8.883 0.405 5.891 0.380 7.558 0.407 12.185
0.272 9.291 0.427 6.443 0.400 8.233 0.427 13.607
0.294 9.700 0.449 6.770 0.422 8.678 0.446 14.490
0.328 9.900 0.476 6.900 0.443 8.859 0.469 14.834
0.381 9.930 0.506 6.805 0.473 8.810 0.494 14.667
0.484 9.463 0.555 6.392 0.514 8.452 0.533 13.832
0.623 8.195 0.653 5.109 0.606 7.148 0.620 11.069
0.781 6.378 0.810 2.421 0.755 4.273 0.806 3.279
1.000 3.333 1.000 -1.480 1.000 -1.547 1.000 -6.122

Table 5.3.2 – Calculated values using kij = 0 and experimental values for the hydration
free energies (kcal/mol) of solutes in water.

Solute ∆Gexp
solv ∆GMie

solv Absolute Deviation
propane 2.00 ± 0.20 1.10 ± 0.01 0.90
benzene -0.86 ± 0.20 -4.45 ± 0.03 3.59
toluene -0.83 ± 0.20 -10.98 ± 0.30 10.15

phenanthrene -3.88 ± 0.60 -10.90 ± 0.04 7.02

With these results, the need for binary interaction parameters became clear.
First, we estimated kij with the SAFT-VR Mie EoS and experimental vapor pressure
data, but this strategy also provided results that had high absolute deviations from the
experimental data. Therefore, we used the approach of estimating kij with the output
from solvation free energy calculations with molecular dynamics, as described in the
last paragraph of Section 4.2. We initially found individual values for the interaction
parameter of each pair, but, since the parameters for aromatic solutes were very similar
(0.148, 0.162, 0.152), we averaged these values. By doing that, we obtained a general
parameter for the water+aromatic pairs, which is exposed in Table 5.3.3. Also in this
table, we display the binary interaction parameter for the pair water+propane.

Table 5.3.3 – Binary interaction parameters employed.

Pair kij

water+propane 0.067
water+aromatic 0.154
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The relatively large kij value of the interaction between aromatic solutes and
water can be related to the lack of an explicit association term in the equation of state
used to obtain the parameters for water. Actually, the SAFT-VR Mie has an association
term (LAFITTE et al., 2013), but it was not incorporated in the force field. The SAFT-γ
Mie model for water (LOBANOVA et al., 2016) has two different temperature-dependent
sets of parameters. The parameters utilized in this work were those estimated with
experimental interfacial tension data. Hence, we tested the only binary interaction pa-
rameter for water+toluene estimated with MD interfacial data available in the literature
(HERDES et al., 2017). Nevertheless, the result also had a high absolute deviation, and
this parameter could not be transferred to the calculation of the solvation free energy of
toluene in water.

These issues faced by SAFT-γ Mie model can also be related to the problems of
modeling water with a coarse-grained force field. One of the main difficulties is the
choice of which water molecules are going to be represented by which specific beads
since water molecules move independently and interact by non-bonded interactions
(HADLEY; MCCABE, 2010; HADLEY; MCCABE, 2012). The SAFT-γ Mie water considers
that one water molecule corresponds to one bead. This strategy only saves a small
amount of simulation time, but it can predict properties at physiological temperatures
unlike other more aggressive models such as the MARTINI, which considers that
one bead represents various water molecules. In light of all these problems related to
modeling the water molecule, the SAFT-γ Mie force field appears to be a good alternative
when working close to room temperatures, but the necessity of additional parameters
estimated with molecular simulation indicates severe flaws in the methodology. This
estimation of the binary parameter increased significantly the simulation time required
to calculate the hydration free energies, since we had to carry out three additional
simulations for every pair water-solute and then three other simulations for the three
water+aromatic solutes in order to test the averaged binary interaction parameter. If
these simulations are necessary for every time a new mixture with water is going to be
studied with the SAFT-γ Mie force field, the use of this model can become impractical.
With this idea in mind, a useful investigation to be made is to check how accurate
would be the prediction of the hydration free energy of other aromatic solutes by the
SAFT-γ Mie force field with the binary interaction parameter estimated here. Using
these binary interaction parameters calculated with data from molecular dynamics, we
then obtained the final hydration free energies presented in Table 5.3.4.
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Table 5.3.4 – Calculated and experimental hydration free energies (kcal/mol) of solutes
in water.

Solute ∆GGAFF
solv ∆GELBA

solv ∆Gexp
solv ∆GMie

solv Absolute
Deviation

propane 2.50 ±0.02 2.76 ± 0.02 2.00 ± 0.20 2.01 ± 0.01 0.01
benzene -0.81±0.02 -0.69 ± 0.01 -0.86 ± 0.20 -1.12 ± 0.01 0.26
toluene -0.79±0.03 -0.76 ± 0.01 -0.83 ± 0.20 -0.84 ± 0.01 0.01

phenanthrene -5.26±0.03 N/A -3.88 ± 0.60 -3.47 ± 0.02 0.41

Hydration free energies calculated using the SAFT-γ Mie force field with kij 6= 0

had low absolute deviations from the experimental data, as expected since the param-
eters were adjusted to fit these experimental data. In the table above, we also show
the results obtained by Genheden (2016) with the ELBA force field and by Mobley and
Guthrie (2014) with the GAFF force field for the solutes and with the TIP3P model for
water. The GAFF (General Amber Force Field) force field is an all-atom model that con-
sists of bonded and non-bonded parameters and is suitable for the study of a significant
number of molecules. In turn, the TIP3P model considers that water is a rigid monomer
represented by three interacting sites with non-bonded interactions and Coulombic
interactions (JORGENSEN et al., 1983). Both the GAFF and the TIP3P models use the
Lennard-Jones potential to calculate the non-bonded interactions. The solvation free
energies for the ELBA force field were estimated with thermodynamic integration and
the solvation free energies with the GAFF force field were estimated with MBAR.

Comparing the results of the three aforementioned force fields, the root mean
square error (RMSE) of all the pairs tested with the SAFT-γ Mie model was 0.24, the
RMSE for hydration free energies obtained with the GAFF force field was 0.73, and that
for the ELBA coarse-grained force field was 0.44. The difference in absolute deviations
between the GAFF and SAFT-γ Mie force fields is significantly high for phenanthrene,
hence the coarse-grained force field with a binary parameter is preferred if the applica-
tion requires a high level of accuracy. The results also indicated that the SAFT-γ Mie
model with the binary interaction parameter performed better than the ELBA force field
in modeling the solvation phenomenon of the pairs studied in this work, but performed
worse with the binary parameter set to zero. This difference in performance occurred
despite the fact that both the SAFT-γ Mie and ELBA models have the same level of
coarse-graining for the solvent (one bead represents one water molecule). Therefore,
the choice between the two coarse-grained models is dependent on the availability and
transferability of binary interaction parameters of the Mie Model. We also present, for
the SAFT-γ Mie force field, the hydration free energy profiles in Figure 5.3.1. Bigger
molecules had steeper free energy profiles, as it was for the solvation free energy study
in other solvents. We also observe that the hydration free energy for the first non-zero
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λ is negative for benzene and toluene when a positive value is expected since free
energy is required for cavity formation in the solvent for the insertion of the solute. This
anomaly can be caused by the fact that the exponential parameters in the Mie potential
compensate for cavity formation.

Figure 5.3.1 – Representation of hydration free energies of different solutes estimated at
each alchemical state.

The results found here for both the solvation free energies and hydration free
energies fulfilled the intentions of this dissertation. We assessed the prediction capability
of the SAFT-γ Mie force field and provided satisfactory solvation free energy estimates
of PAHs using a coarse-grained force field. In addition to that, we found flaws in the
methodology used by the SAFT-γ Mie force field to model the water molecule. Hence,
these shortcomings of this model can now be addressed, and the force field can even
be improved by using other mixing rules to avoid the use of a binary parameter or,
even, using hydration free energy estimates in the parameterization of water. These
results also encourage us to calculate solvation free energies of more complex molecules
mimicking asphaltenes in non-aqueous solvents in future studies.

5.4 Partition Coefficients

Using the solvation free energies estimated in the sections above, we also calcu-
lated partition coefficients by means of Eq. (3.115), for the pairs water/1-octanol and
water/hexane with the intention of testing the modeling capabilities of the SAFT-γ
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Mie force field again. The partition functions studied here have many experimental
data available in the literature due to their environmental importance (SANGSTER,
1997). Besides this, the calculations of these specific partition coefficients are relevant
because 1-octanol is used to quantify hydrophobicity and can serve as a model for
biological lipids and different soils (RUELLE, 2000), and hexane is a model for an apolar,
hydrophobic phase. Calculated values and experimental data are shown in Table 5.4.1.
The experimental data of the partition coefficients were taken from Poole et al. (2000),
Sangster (1997) for the coefficient of water/1-octanol and from Schulte et al. (1998) for
the coefficient of water/hexane.

Table 5.4.1 – Partition Coefficient Calculated from MD simulations and from
experimental data.

Molecular Dynamics Experimental Absolute Deviation
log Pwater/1−octanol

propane 2.47 2.40 0.07
phenanthrene 3.57 4.46 0.89

log Pwater/hexane

benzene 1.93 2.06 0.13
phenanthrene 4.17 4.49 0.32

Overall absolute deviations were small for pairs with smaller solvation free en-
ergy deviations such as propane and benzene. The water/1-octanol partition coefficient
of phenanthrene had higher deviation due to the higher deviation of the free energy of
solvation of this compound in 1-octanol. Comparing with other force fields, Garrido
et al. (2009) reported average absolute deviations for the water/1-octanol partition
coefficient of 0.4 with the GROMOS 53a6 force field (OOSTENBRINK et al., 2004), 0.3
for TraPPE, and 0.9 for OPLS-AA/TraPPE force fields. However, they attribute the
low deviations of TraPPE to the cancellation of errors between the two solvation free
energies. Additionally, Genheden (2016) found average absolute deviations of 0.86 for
the water/hexane partition coefficients and of 0.75 for the water/1-octanol partition
coefficients with the ELBA coarse-grained force field. In this dissertation, we performed
a small study of partition coefficients with the SAFT-γ Mie force field. Hence, a larger
set would be necessary to do a complete evaluation of the performance of this force
field in the prediction of partition coefficients.



6 Conclusions

This dissertation consisted in the study of solvation free energy calculations of
aromatic solutes in different solvents by using the SAFT-γ Mie coarse-grained force field.
Solvation free energy studies are mostly done using water as a solvent and with all-atom
force fields based on the Lennard-Jones potential. Therefore, with this study, we were
able to provide data about the capability of a coarse-grained force field based on the Mie
potential in calculating solvation free energies. Additionally, the solvation free energy
estimations carried out here can help improve the SAFT-γ Mie force field since these
calculations are helpful in identifying errors and shortcomings in the modeling process.
The SAFT-γ Mie uses the SAFT-VR Mie EoS in its parameterization, which results
in a relatively straightforward top-down method of obtaining parameters. Following
this strategy, the phenanthrene parameters, which were not available in the original
database of this force field, were obtained using vapor-liquid equilibrium data and two
different ring equations and geometries. However, only the parameters estimated with
the ring equation proposed by Müller and Mejía (2017) were utilized in the solvation
free energy simulations since this equation did not require molecular simulation data in
its parameterization.

To perform our expanded ensemble simulations, we optimized the coupling
parameters and their respective simulation weights. The resulting potential energies
from the expanded ensemble simulations then served as input to estimate solvation free
energy differences with the MBAR method. The results for non-aqueous solvents had
absolute deviations from the experimental data of less than 2.0 kcal/mol, except for
the pair 1-octanol+anthracene. We also observed the geometry effect on the free energy
curves - larger molecules had steeper curves and more substantial absolute deviations.
The influence of carbon dioxide on the solvation free energy of phenanthrene in toluene
was found to be negligible according to the SAFT-γ Mie force field.

Hydration free energy calculations with the SAFT-γ Mie model required the use
of relatively large values of kij to produce satisfactory results. We chose to estimate the
parameter with the output from molecular dynamics data since the strategy of using the
SAFT-VR Mie EoS provided high absolute deviations from the experimental data. This
necessity of one additional parameter probably happens due to the lack of a term to
account for the hydrogen bond in the EoS on which this force field is based and due to
problems associated with the coarse-graining of water molecules. The results obtained
with kij estimated with MD output were satisfactory, the absolute deviations from the
experimental data found were smaller than the ones for the GAFF and ELBA force fields.
We also used the solvation free energies to calculate partition coefficients in water/1-
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octanol and water/hexane. The obtained absolute deviations from experimental data
were similar to the ones found for all-atom force fields (GROMOS, TraPPE and OPLS-
AA/TraPPE) and another coarse-grained force field (ELBA).

Overall, the SAFT-γ Mie force field proved to be a suitable model to represent
the solvation phenomenon of non-aqueous solvents. It correctly described solvation
free energies of solutes mimicking asphaltenes dissolved in hexane, toluene, 1-octanol.
However, the calculation of hydration free energies required the use of a binary in-
teraction parameter estimated with MD output, which increased the simulation time
significantly. This fact evidenced flaws in the methodology used by the SAFT-γ force
field and raised questions about the feasibility of this model for hydration free energy
calculations. Nevertheless, the SAFT-γ Mie force field for water used here does not
predict freezing at room temperature as other force fields do, which is essential for our
hydration free energy calculations. Therefore, it would be relevant to test if the binary
interaction parameter for our aromatic solutes estimated here can be used in hydra-
tion free energy calculations of other aromatic solutes and if we could use MBAR to
obtain the kij through reweighting. Hence, we would only need to carry out molecular
dynamics simulations with one value of kij , and then use this output to estimate with
MBAR the results with other k′ijs. We also have some ideas that could be developed
in the future using the results from this dissertation. The SAFT-γ Mie force field could
be used to model larger asphaltene models and, consequently, increase the scale of the
simulations we performed. Additionally, it would be a valid investigation to study new
methodologies to calculate solubility with solvation free energies using the SAFT-γ Mie
force field.
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APPENDIX A – Detailing of the
SAFT-VR Mie Equation of State

The term a1 in Eq. 3.76 is the first-order mean-attractive energy of the mixture
(LAFITTE et al., 2013), and is given by

a1 =
n∑
i=1

n∑
j=1

xs,ixs,ja1,ij, (A.1)

where a1,ij is the term corresponding to the pair interactions. It is equal to

a1,ij =Cij{x
λa,ij
0,ij [as1,ij(ρs;λa,ij) +Bij(ρs;λa,ij)]

− xλr,ij0,ij [as1,ij(ρs;λr,ij) +Bij(ρs;λr,ij)]},
(A.2)

with Cij equals to

Cij =
λr,ij

λr,ij − λa,ij

(
λr,ij
λa,ij

)(
λa,ij

λa,ij−λa,ij

)
. (A.3)

Also in Eq. A.2, Bij(ρs;λij) is equal to

Bij(ρs;λij) = 2πρsd
3
ijεij

[
1− ζx/2
(1− ζx)3

Iλ,ij −
9ζx(1 + ζx)

2(1− ζx)3
Jλ,ij

]
, (A.4)

ζx =
πρs
6

n∑
i=1

n∑
j=1

xs,ixs,jd
3
ij. (A.5)

Here, Iλ,ij and Jλ,ij two terms that depend of the Mie potential. They are given
by

Iλ,ij =
(x0,ij)

3−λij − 1

λij − 3
, (A.6)

Jλ,ij =
(x0,ij)

4−λij(λij − 3)− (x0,ij)
3−λij(λij − 4)− 1

(λij − 3)(λij − 4)
. (A.7)

The terms as1,ij are the mean-attractive energies of a Sutherland potential of
variable range and are obtained using a SAFT-VR treatment (AVENDAÑO et al., 2013).
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The resulting equation is:

aS1,ij(ρs;λij) = −2ρs

(
πεijd

3
ij

λij − 3

)
1− ζeffx (λij)/2

[1− ζeffx (λij)]3
, (A.8)

where ζeffx (λij) is the effective packing fraction obtained within a van der Waals one-
fluid approximation (LAFITTE et al., 2013). It is equal to

ζeffx (λij) = c1(λij)ζx + c2(λij)ζ
2
x + c3(λij)ζ

3
x + c4(λij)ζ

4
x. (A.9)

Here, the coefficients c1, c2, c3 and c4 are


c1

c2

c3

c4

 =


0.81096 1.7888 − 37.578 92.284

1.0205 − 19.341 151.26 − 463.50

−1.9057 22.845 − 228.14 973.92

1.0885 − 6.1962 106.98 − 677.64

 ·


1

1/λij

1/λ2
ij

1/λ3
ij

 . (A.10)

The second-order fluctuation term, a2, in Eq. 3.76 has a similar formulation to a1.
It is given by

a2 =
n∑
i=1

n∑
j=1

xs,ixs,ja2,ij, (A.11)

where a2,ij is equal to

a2,ij =
1

2
KHS(1 + χij)εijC2

ij{x
2λa,ij
0,ij [as1,ij(ρs; 2λa,ij) +Bij(ρs; 2λa,ij)]

− 2x
2λa,ij+2λr,ij
0,ij [as1,ij(ρs;λa,ij + λr,ij) +Bij(ρs;λa,ij + λr,ij)]

+ x
2λr,ij
0,ij [as1,ij(ρs; 2λr,ij) +Bij(ρs; 2λr,ij)]}.

(A.12)

In Eq. A.12, KHS is the isothermal compressibility of the mixture of hard spheres.
It is equal to

KHS =
(1− ζx)4

1 + 4ζx + 4ζ2
x + 4ζ3

x + ζ4
x

, (A.13)

where ζ̄x is the packing fraction for the mixture. It is equal to

ζ̄x =
πρs
6

n∑
j=1

xs,ixs,jσ
3
ij, (A.14)
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In Eq. A.12, χij is an empirical function of ζ̄x. It is given by

χij = fi(αij)ζ̄x + f2(αij)ζ̄
5
x + f3(αij)ζ̄

8
x, (A.15)

where αij represents the equation for mixtures for the reduced attractive van der Waals
constant of the Mie potential. It is given by

αij = Cij
(

1

λa,ij − 3
− 1

λr,ij − 3

)
. (A.16)

Finally, a3 in Eq. 3.76 is equal to

a3 =
n∑
i=1

n∑
j=1

xs,ixs,ja3,ij, (A.17)

where a3,ij is equal to

a3,ij = −ε3ijf4(αij)ζ̄x exp[f5(αij)ζ̄x + f6(αij)ζ̄
2
x]. (A.18)

The functions fk(k = 1, ..., 6) are obtained with

fk(αij)

∑n=3
n=0 φk,nα

n
ij

1 +
∑n=6

n=4 φk,nα
n−3
ij

, (A.19)

where φk,n are coefficients defined in the original paper by Lafitte et al. (2013).

The density dependent coefficients of Eq. 3.83 are given by the following equa-
tions:

k0 = − ln(1− ζx) +
42ζx − 39ζ2

x + 9ζ3
x − 2ζ4

x

6(1− ζx)3
, (A.20)

k1 =
ζ4
x + 6ζ2

x − 12ζx
2(1− ζx)3

, (A.21)

k2 =
−3ζ2

x

8(1− ζx)2
, (A.22)

k3 =
−ζ4

x + 3ζ2
x + 3ζx

6(1− ζx)3
. (A.23)

In Eq. 3.82, the term g1,ij(σij) is the first-order contribution to the radial distribu-
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tion function. It has the following form:

g1,ij(σij) =
1

2πεijd3
ij

[
3
∂a1,ij

∂ρs
− Cijλa,ijx

λa,ij
0,ij

as1,ij(ρs;λa,ij) +Bij(ρs;λa,ij)

ρs

+Cijλr,ijx
λr,ij
0,ij

as1,ij(ρs;λr,ij) +Bij(ρs;λr,ij)

ρs

]
.

(A.24)

Also in Eq. 3.82, the second-order contribution to the radial distribution function
(g2,ij(σij)) is equal to

g2,ij(σij) = (1 + γc,ij)g
MCA
2,ij (σij), (A.25)

where gMCA
2,ij (σij) is equal to

g2,ij(σij) =
1

2πεijd3
ij

[
3
∂ a2

1+γij

∂ρs
− εijKHSC2

ijλr,ijx
2λr,ij
0,ij

as1,ij(ρs; 2λr,ij) +Bij(ρs; 2λr,ij)

ρs

+εijK
HSC2

ij(λr,ij + λa,ij)(x0,ij)
λr,ij+λa,ij

as1,ij(ρs;λr,ij + λa,ij) +Bij(ρs;λr,ij + λa,ij)

ρs

−εijKHSC2
ijλa,ijx

2λa,ij
0,ij

as1,ij(ρs; 2λa,ij) +Bij(ρs; 2λa,ij)

ρs

]
,

(A.26)
and γc,ij is a correction factor obtained from the equation bellow:

γc,ij = φ7,0ζ̄xθij exp(φ7,3ζ̄x + φ7,4ζ̄
2
x){1− tanh[φ7,1(φ7,2 − αij)]}, (A.27)

where θij = exp(βεij)− 1.
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Figure B.0.1 – Overlap matrix for hexane+pyrene [a], hexane+phenanthrene [b],
1-octanol+propane [c], 1-octanol+anthracene [d],

1-octanol+phenanthrene [e], and toluene+pyrene [f].
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Figure B.0.2 – Overlap matrix for toluene+anthracene [a], toluene+phenanthrene [b],
water+propane [c], water+benzene [d], water+toluene [e], and

water+phenanthrene [f] .
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Figure B.0.3 – Overlap matrix for the different wCO2 of the mixture
toluene+CO2+phenanthrene. wCO2 = 0.087 [a], wCO2 = 0.119 [b],

wCO2 = 0.169 [c], and wCO2 = 0.289 [d].
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O fenantreno é um hidrocarboneto policíclico aromático que pode ser usado para estudar 
moléculas mais complexas como os asfaltenos. Portanto, é interessante desenvolver campos 
de forças para simulação molecular eficientes computacionalmente que consigam descrever 
esses tipos de molécula. O campo de força SAFT-γ CG, escolhido para o estudo, é do tipo 
coarse-grained e foi desenvolvido com base na equação de estado SAFT-VR Mie. Essa 
equação modela uma substância subdividindo sua estrutura em segmentos que interagem 
através de potencial de Mie. Os parâmetros desse campo de força para o fenantreno foram 
estimados e avaliados em relação à determinação de propriedades de equilíbrio líquido-vapor 
(ELV). A estratégia de estimação possui duas etapas. A primeira consiste em minimizar o erro 
quadrático entre a pressão de vapor calculada com a equação de estado (EdE) SAFT-VR Mie 
e os valores experimentais. Os parâmetros dessa minimização foram, então, usados no cálculo 
de ELV com o método de Gibbs Ensemble Monte Carlo com volume total constante (GEMC-
NVT). A segunda etapa consistiu em estimar novamente os parâmetros através do método de 
mínimos quadrados envolvendo a pressão de vapor e a densidade de líquido saturado 
calculadas por Monte Carlo (MC) e as calculadas com a EdE SAFT-VR Mie. Essa segunda 
parte é necessária devido a aproximações teóricas que geram diferenças entre os resultados da 
simulação molecular e da EdE. Esse campo de força apresentou uma boa descrição da pressão 
de vapor do fenantreno com método de GEMC quando comparado com os dados 
experimentais. As densidades de líquido e vapor saturados e as propriedades críticas 
apresentaram resultados similares aos obtidos com o campo de força atomístico TraPPE-EH, 
sendo que o SAFT-γ CG exige menor esforço computacional. Para continuação do trabalho, 
pretende-se usar esses parâmetros para calcular a energia de solvatação do fenantreno, em 
diluição infinita, em tolueno e em solução tolueno + CO2 com dinâmica molecular. 
 
Palavras-chave: campo de força, SAFT-γ CG, simulação molecular, fenantreno. 
 
Introdução 

 
Os campos de força do tipo coarse-grained parametrizados a partir de propriedades 
experimentais são uma alternativa aos campo de força desenvolvidos com cálculos ab initio 
quando a escala das simulações moleculares precisa ser aumentada. O método coarse-grained 
consiste, basicamente, em dividir a substância em pseudo-átomos representativos de grupos 
de átomos. Normalmente, a parametrização do campo de força é feita a partir de informações 
obtidas em uma escala mais detalhada. Quando as informações utilizadas provêm do 
comportamento em uma escala maior, a estratégia para o modelo coarse-grained é dita ser do 
tipo top down. Um dos campos de força que possuem essa estratégia é o SAFT-γ CG 
(Avendaño et al., 2011), o qual foi desenvolvido com base na equação de estado (EdE) 
SAFT-VR Mie (Lafitte et al., 2013). Esse modelo usa o potencial de Mie para descrever 
moléculas formadas por segmentos conectados. A vantagem de usar essa equação como base 
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para o campo de força é a sua capacidade de descrever bem as propriedades do fluido, 
incluindo derivadas de segunda ordem, de uma variedade de sistemas (Lafitte et al., 2013). 
Com base nessas ideias, o presente trabalho teve como objetivo parametrizar o campo de 
força SAFT-γ CG para o fenantreno, cuja estrutura é apresentada na Figura 1, utilizando 
dados de equilíbrio líquido-vapor e considerando que ele é formado por três segmentos 
esféricos. O fenantreno foi escolhido como forma de testar a capacidade de representação 
desse campo de força simplificado, já que sua parametrização para moléculas menores tem 
sido bem sucedida (Lafitte et al., 2012). Outra razão para o estudo do fenantreno é o fato de 
ele servir como modelo simplificado para moléculas mais complexas, tais como os asfaltenos, 
já que possui uma estrutura de anéis policondensados e é solúvel em tolueno. 
 

 
Figura1. Estrutura molecular do fenantreno. 

 
Metodologia 
 
Estimação com a Equação de Estado SAFT-VR Mie 

 
A EdE SAFT-VR Mie descreve moléculas formadas por segmentos conectados e que 
interagem através do potencial de Mie, dado por: 
 

 
                     

a r aλ λ λ λ λr a
r r

Mie
r a a

λ λ σ σ
U r =

λ λ λ r r
            (1) 

 

em que rλ é o expoente repulsivo, aλ é o expoente atrativo, σ  corresponde à distância entre os 
centros dos segmentos e   é o parâmetro de energia do segmento. A energia livre de 
Helmholtz específica para a EdE SAFT-VR Mie para um fluido não-associativo é definida 
como 

 
a=aIDEAL+aMONO +aCHAIN

,               (2) 

 
em que IDEALa é a contribuição de gás ideal, MONOa é contribuição dos monômeros (segmentos 
desconectados) e CHAINa é a contribuição relativa à formação das cadeias de segmentos. Para 

cadeias que possuem sm segmentos do mesmo tipo tangencialmente ligados, a contribuição da 
cadeia é 

 

   1 lnCHAIN Mie
sa = m g σ  ,               (3) 

onde  ln Mieg σ  é o valor da função de distribuição radial de pares para o fluido monomérico 
de referência (fluido de Mie). Devido à estrutura aromática do fenantreno, usou-se a seguinte 
expressão para anéis formados por sm  segmentos no lugar da contribuição de cadeia: 
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 lnRING Mie
sa = m g σ .               (4) 

 
Essa substituição é feita porque a diferença entre uma molécula formada por cadeias e uma 
formada por anéis, tendo ambas o mesmo número de segmentos, é que a última possui uma 
ligação a mais (Lafitte et al., 2012). Para o equacionamento completo da EdE, o leitor é 

referido ao artigo de Lafitte et al. (2013). Seguindo essa formulação, os parâmetros   , rλ  e σ  

foram estimados e os parâmetros sm  e aλ foram fixados em 3 e 6, respectivamente. A razão 
para fixar o número de segmentos em três deve-se à própria estrutura do fenantreno, que 
consiste em três anéis aromáticos condensados. Já o parâmetro atrativo foi fixado no valor 
London para facilitar a estimação, já que é comprovada a alta correlação entre os parâmetros 
repulsivo e atrativo do potencial (Ramrattan et al., 2015). A minimização foi feita através do 
método PSO (Particle Swarm Optimization) e com apenas dados de pressão de vapor, por 
uma questão de indisponibilidade de dados experimentais de densidade do fenantreno como 
líquido saturado. A função objetivo possuiu a seguinte forma: 
 

 
2exp

exp exp
1

( ) ( )

( )

 
 
 


N SAFTP

SAFT SAFT SAFT v i v i
r

i= v i

P T P T
F σ , ,λ =

P T
           (5) 

 

em que PN  corresponde ao número de pontos experimentais, 
exp

vP  aos pontos de pressão de 

vapor experimental (Mortimer e Murphy, 1923) e 
SAFT

vP  à pressão de vapor calculada com a 
EdE SAFT-VR Mie. Esse cálculo de equilíbrio foi feito usando como base a rotina do ponto 
de bolha proposta por Smith et al. (2007). 
 
Cálculo com o Método “Gibbs Ensemble Monte Carlo” (GEMC)  
 
Os parâmetros estimados com equação SAFT-VR Mie foram usados para realizar simulações 
no GEMC (Panagiotopoulos, 1987) com o simulador CASSANDRA (Shah e Maginn, 2011). 
O método de GEMC foi desenvolvido com o intuito de estudar a coexistência entre fases 
através da simulação simultânea de duas caixas com condições de contorno periódicas e que 
trocam moléculas, energia e volume entre si, mas de forma a manter o volume total constante. 
O equilíbrio entre elas é obtido através de passos de Monte Carlo (MC) que incluem o 
deslocamento aleatório das moléculas, mudança de volume e transferências aleatórias de 
moléculas entre as caixas. Para sistemas com apenas um componente, os cálculos são 
realizados mantendo-se o volume e o número de partículas total constantes (NVT), mas de 
maneira a permitir a variação de volume ( liq vapV =V +V ) e partículas ( liq vapN = N + N ) 
dentro de cada caixa. Essas simulações no GEMC-NVT foram feitas inserindo-se 
aleatoriamente 400 moléculas na caixa líquida e 100 moléculas na caixa vapor. As densidades 
iniciais das caixas foram escolhidas ajustando-as às densidades obtidas com a EdE SAFT-VR 
Mie, para evitar que todas as moléculas migrassem pra uma única caixa ao longo da 
simulação. A simulação consistiu em, no mínimo, 10000 ciclos de equilibração e 100000 
ciclos de produção, sendo que cada ciclo de MC corresponde a 1000 tentativas de rotação, 
1000 de translação, 100 de inserção, 100 de exclusão e 10 de variação de volume. A distância 
de corte usada foi igual a quatro vezes o valor do diâmetro do segmento estimado e as 
interações de van der Waals foram calculadas através do potencial Mie com correção de longa 

distância (tail correction). As propriedades densidade de vapor ( vapρ ), densidade de líquido 

( liqρ ) e pressão (
sim

vP ) foram amostradas a cada 100 ciclos de MC e essas amostragens foram 
divididas em cinco blocos para os cálculos da média e do desvio padrão. Os resultados 
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obtidos nessas simulações foram usados para estimar coeficientes de correção para os 
parâmetros conformacionais do campo de força ( σc  e c ), que são relacionados aos 

parâmetros provenientes da EdE SAFT-VR Mie através de parâmetros oriundos de ajuste, 
ajuste SAFT

σσ = c σ                   (6) 

 
ajuste SAFT= c  .                 (7) 

 
Os parâmetros de ajuste são necessários porque as aproximações teóricas feitas na EdE geram 
discrepâncias entre os resultados da simulação molecular e os da EdE (Lafitte et al., 2012). 
Por isso, a estimação desses parâmetros foi feita de maneira a diminuir as diferenças entre a 
pressão de vapor e a densidade de líquido saturado obtidas com a equação de estado e as 
obtidas via simulação molecular. A função objetivo, minimizada através do método PSO, 
possuiu a seguinte forma: 
 

     
 

   
 

2
sim SAFT

sim sim
1

2
sim SAFT

sim
1

SAFT SAFT ajuste ajusteNP
v i v i

σ SAFT SAFT
i= v i

SAFT SAFT ajuste ajusteNP
liq i liq i

SAFT SAFT
i= liq i

P T ,σ , P T ,σ ,
F c ,c =

P T ,σ ,

ρ T ,σ , ρ T ,σ ,
+

ρ T ,σ ,



 



 



 
 
 
 

 
 
 
 





       (8) 

 
Com os parâmetros atrativo e repulsivo fixados nos valores encontrados com a EdE SAFT-
VR Mie, o espaço paramétrico pode ser redefinido de maneira a se encontrar um conjunto de 
parâmetros refinado para o campo de força SAFT-γ CG (Lafitte et al., 2012), que são: 
 

sim SAFT
σσ = σ c                   (9) 

 
sim SAFT= c                 (10) 

 
As simulações pelo método GEMC-NVT foram refeitas seguindo-se a mesma metodologia e 
os resultados foram comparados com os dados de referência. A determinação do ponto crítico 
não foi realizada por meio do método GEMC-NVT, pois ele apresenta grandes flutuações 
perto do ponto crítico, que fazem as caixas de simulação mudarem de identidade durante a 

simulação. A temperatura crítica ( CT ) foi então ajustada através do método PSO com a 
seguinte equação:  
 

   η

liq vap Cρ ρ = A T – T              (11) 

 
As densidades de líquido e vapor no equilíbrio na equação acima foram provenientes de 
simulações feitas em uma faixa de temperatura entre 476,75 e 825 K. O expoente crítico (η) 
foi fixado no valor correspondente ao seu valor universal (0,325) (Hansen e McDonald, 2006) 

e a constante A foi determinada pelo ajuste. A densidade crítica ( cρ ) foi obtida através da lei 
linear dos retângulos (Equação 12) na mesma faixa de temperatura usada para obter CT .  

   
2

liq vap

c C

ρ ρ
= ρ + D T – T


             (12) 
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A curva de coexistência líquido-vapor do campo de força SAFT-γ CG foi comparada com os 
resultados disponíveis na literatura para o campo de força TraPPE-EH (Rai e Siepmann, 
2013), e as demais propriedades foram avaliadas por comparação com dados experimentais 
(Mortimer e Murphy, 1923; Nelson e Senseman, 1922; Linstrom e Mallard, 2017). A equação 
de desvio relativo absoluto médio usada possui a seguinte forma: 
 

1

1
100%

NP ref calcii

i=p refi

X X
ΔX =

N X


 ,            (13) 

 
refX é o valor da propriedade de referência e calcX é o valor da propriedade calculado. 

 
Resultados e Discussão 
 
Os parâmetros do fenantreno com três segmentos para o campo de força SAFT-γ CG 
estimados com a metodologia descrita estão expostos na Tabela 1. 
 

Tabela 1. Parâmetros do campo de força SAFT-γ CG para o fenantreno. 
simσ /A  sim

bκ /K 
sim
rλ  

4,008 529,646 14,339 
 
A Figura 2 mostra a pressão de vapor do fenantreno em função de temperatura. O campo de 
força com parâmetros estimados conseguiu apresentar um comportamento similar ao 
observado nos dados experimentais, considerando a sua simplicidade e eficiência 
computacional. O valor da pressão de vapor para temperaturas mais próximas do ponto 
normal de ebulição foi subestimado, enquanto houve uma superestimação dos valores de 
pressão de vapor para temperaturas mais baixas. Esse mesmo comportamento e o desvio 
relativo da pressão de vapor, exposto na Tabela 2, foram similares aos resultados observados 
para os cálculos de propriedades de equilíbrio e transporte do dióxido de carbono e metano 
com o campo de força SAFT-γ CG em trabalhos anteriores (Aimoli et al., 2014; Aimoli, 
2015). Observa-se, também, que os resultados obtidos ficaram próximos dos resultados do 
campo de força TraPPE-EH disponíveis na literatura, o que indica que a simplificação do 
modelo acarreta somente em pequenos desvios no cálculo da pressão de vapor. O desvio 
relativo médio está disponível na Tabela 2. 
 

Tabela 2. Desvio relativo médio entre os resultados obtidos com o campo de força SAFT-γ 
CG e os dados experimentais. 
 Δ / % 

Pv  9,01 
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Figura 2. Pressão de vapor em função da temperatura calculada com o campo de força SAFT-

γ CG (círculos vermelhos), dados experimentais (triângulos azuis) e resultados do campo 
de força TraPPE-EH (asteriscos pretos). A figura inserida é o mesmo gráfico, porém no 

formato de Clausius-Clapeyron.  
 

Na Figura 3, as curvas de densidade de líquido e vapor saturados obtidas para o campo de 
força SAFT-γ CG foram comparadas com os dados disponíveis do TraPPE-EH. O campo de 
força estimado apresentou comportamento razoavelmente similar, mas com discrepâncias 
maiores do que aquelas observadas para os resultados de pressão de vapor. Adicionalmente, a 
densidade do fenantreno foi calculada fora do ELV no ensemble NPT-MC a uma temperatura 
de 298 K e a uma pressão de 1 bar como forma de comparar os resultados com o valor 
experimental disponível que é igual 1180 kg/m3 (Linstrom e Mallard, 2017). O campo de 
força TraPPE-EH forneceu um valor de densidade igual 1110 kg/m3 e o campo de força 
SAFT-γ CG forneceu um valor igual a 1455 kg/m3. Esses resultados mostram que o campo de 
força SAFT-γ CG tem mais dificuldade em predizer propriedades em estados diferentes 
daquele que foi estimado do que o TraPPE-EH por ser um modelo coarse-grained top down. 
Então, essa diferença na densidade pode ter sido causada pelo uso de apenas a pressão de 
vapor na estimação dos parâmetros da equação de estado tida como base. 
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Figura 3. Curva de coexistência líquido vapor calculada com campo de força SAFT-γ CG 
(círculos vermelhos) e com o campo de força TraPPE-EH (triângulos azuis). O círculo e o 

triângulo pretos representam as propriedades críticas calculadas com o ajuste. 
 

Os desvios relativos da densidade de líquido e de vapor saturados e das propriedades críticas 
encontradas com o ajuste das Equações 12-13 estão resumidos na Tabela 3. Os desvios 
deixam clara a existência de uma diferença significativa para densidade no equilíbrio 
ocasionados pela diferença de rigor teórico entre os modelos. Essas discrepâncias talvez 
possam ser reduzidas com uso dos dados da densidade do campo de força TraPPE-EH para 
estimação inicial, o que permitiria um melhor ajuste do expoente atrativo do potencial de Mie. 
Já com relação à previsão da temperatura crítica, os resultados entre os campos de força foram 
mais próximos.  
 

Tabela 3. Propriedades críticas e desvios relativos entre o campo de força SAFT-γ CG e os 
dados de referência para o fenantreno. 

Δ / % 

CT   cρ   liq  vap  
4,08 38,17 21,42 38,64 

 
Conclusão 
 
O campo de força SAFT-γ CG foi obtido para o fenantreno com uma metodologia em que se 
usa a equação de estado SAFT-VR Mie como base para parametrização desse campo de força. 
Os parâmetros encontrados foram avaliados através de cálculos das propriedades de equilíbrio 
com o método GEMC-NVT. Os resultados para pressão de vapor tiveram concordância com 
os dados experimentais e com o resultados da literatura obtidos para o campo de força 
atomístico TraPPE-EH. As densidades de líquido e vapor no equilíbrio apresentaram maiores 
desvios em relação ao TraPPE-EH do que a pressão de vapor. Isso mostra que a simplificação 
da molécula não representou uma grande perda na representação da pressão de vapor do 
fenantreno e que esse modelo de campo de força pode ser uma alternativa a modelos 
atomísticos. Com esse campo de força avaliado, pretende-se fazer cálculos de energia de 
solvatação do fenantreno em tolueno e em soluções tolueno+CO2 utilizando-se dinâmica 
molecular.  
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Abstract

Solvation free energies can be essential in the process of evaluating and developing force fields. In addition to that,
it is possible to obtain a diversity of thermodynamic informations using solvation free energies. Hence, we aim
the solvation free energies of molecules mimicking asphaltenes in aqueous and non-aqueous solvents with a coarse-
grained model known as SAFT-γMie force field. This model uses a top-down parameterization in which the force field
parameters are obtained using a equation of state. The use of solvation free energy calculations to evaluate this force
field can then help to improve this force field and increase the scale of these simulations. The solvation free energies
presented in this article were obtained by carrying out molecular dynamics simulations using the expanded ensemble
method. The output of these simulations was then used to estimate the free energy differences. For this, we employed
the MBAR method. The results with solvents other than water had low absolute deviations from experimental data.
In turn, hydration free energy calculations required a binary interaction parameter estimated with output data from
molecular dynamics in order to obtain accurate free energy differences. These results indicated problems on the
description of the water molecule by the SAFT-γ Mie force field, but, generally, proved that this coarse-grained model
could represent the solvation free energies of the studied solute-solvent pairs.

Keywords: solvation free energies, SAFT-γ Mie

1. Introduction

Solvation free energy calculations with molecular dy-
namics (MD) have a variety of applications ranging from
drug design in the pharmaceutical industry to the devel-
opment of separation technologies in the chemical indus-
try. Solvation free energy is, more specifically, the differ-
ence in free energy related to the process of transferring a
solute from an ideal gas phase into a liquid solution [1].
Through the study of the solvation phenomenon, it is pos-
sible to obtain information about the behavior of the sol-
vent in different thermodynamic conditions and the influ-
ence of the solute’s molecular geometry. It is also possible
to calculate other important properties with the solvation

∗Corresponding author
Email address: abreu@eq.ufrj.br (Charlles R. A. Abreu )

free energy, namely the activity coefficient at infinite di-
lution, Henry constant, and partition coefficients. Addi-
tionally, solvation free energy calculations can be part of
the methodology of calculating solubility from molecular
dynamics.

The solvation free energy calculations described above
are intrinsically complex due to the many competing
forces interfering in the behavior of the solute-solvent in-
teraction. In addition, free energy simulations are sus-
ceptible to sampling problems in low energy regions, and
simulation results need to be correctly post-processed in
order to yield free energy differences with small uncer-
tainties. Various simulation methodologies were devel-
oped to enable estimations of free energy differences such
as the expanded ensemble [2], thermodynamic integra-
tion [3], free energy perturbation (FEP) [4, 5, 6], and um-
brella sampling [7]. Utilizing FEP methodologies, recent
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articles [8, 9] made available a large database of hydra-
tion free energies of small molecules using the GAFF
force field. Beckstein et al. [10] also calculated the hy-
dration free energies for fifty-two compounds with the
OPLS-AA force field. They obtained an overall root
mean square deviation to the experimental data of 1.75
kcal/mol. Izairi and Kamberaj [11] studied hydration free
energies but with the intention of comparing the polar and
nonpolar contributions. Garrido et al. [12, 13] calculated
the free energy of solvation of large alkanes in 1-octanol
and water with three different force fields (TraPPE, GRO-
MOS, and OPLS-AA/TraPPE). These authors also esti-
mated the solvation free energy of propane and benzene in
non-aqueous solvents like n-hexadecane, n-hexane, ethyl-
benzene, and acetone with the TraPPE-UA and TraPPE-
AA force fields. Roy et al. [14] addressed the choice
of the Lennard-Jones parameters for predicting solvation
free energy of different solutes in 1-octanol. They cal-
culated the solvation free energy of a set of 205 small
organic molecules in 1-octanol and found that the force
field parametrization of n-octanol proposed by Kobryn
and Kovalenko [15] provided the best agreement to the
experimental data. Gonçalves and Stassen [16] calculated
the free energy of solvation using the polarizable con-
tinuum model coupled to molecular dynamics simulation
with the GROMOS force field. These calculations were
done with a representative set of solutes and with the sol-
vents tetrachloride, chloroform, and benzene. Using the
GAFF and the polarizable AMOEBA force fields, Mo-
hamed et al. [17] evaluated the solvation free energy of
small molecules in toluene, chloroform, and acetonitrile,
and obtained a mean unsigned error of 1.22 kcal/mol for
AMOEBA and 0.66 kcal/mol for GAFF. Genheden [18]
expanded the ELBA coarse-grained force field to calcu-
late solvation free energies of more than 150 solutes taken
from the Minnesota solvation database in polar (water,
hexanol, octanol, and nonanol) and apolar (hexane, oc-
tane, and nonane) solvents. He obtained mean absolute
deviations of 1 kcal/mol for water and 1.5 kcal/mol for
hexane. In this model, three carbons are represented by a
single bead and water is represented by a single bead with
point-dipole.

As can be seen in the previous paragraph, solvation free
energy simulation is performed in the literature using a va-
riety of force field since the choice of force field can be an-
other influencing factor in the output of these calculations.

Hence, we, in this study, assess the efficiencies and short-
comings of the SAFT-γ Mie coarse-grained force field
[19] with solvation free energy calculations for a variety
of pairs solute-solvent. We chose a coarse-grained force
field because these kind of models generally reproduce
free energy differences since the effects of reducing de-
grees of freedom in the entropy are counterbalanced by
the reduction of enthalpic terms [20]. This fact makes
these models a viable option to decrease the computa-
tional time of solvation free energy calculations. Addi-
tionally, deficiencies in the description of small molecules
by coarse-grained models can be revealed by free energy
calculations [21, 1]. We specifically picked the SAFT-γ
Mie force field because it uses, unlike the majority of the
force fields, the Mie potential and because its method of
obtaining parameters is more straightforward than other
coarse-grained models. the SAFT-γ Mie force field was
initially parameterized with pure component equilibrium
and interfacial tension data [19], and this strategy has pro-
vided satisfactory results. Examples include the predic-
tion of phase equilibrium of aromatic compounds [22],
alkanes, light gases [23], and water [24], thermodynamic
properties of carbon dioxide and methane [25], multi-
phase equilibrium of mixtures of water, carbon dioxide,
and n-alkanes [26], and water/oil interfacial tension [27].

We selected the solvents and solutes in our free en-
ergy calculations with the intention of testing the force
field with standard sets used as a benchmark in solva-
tion free energy calculations and with polycyclic aromatic
substances used as models to asphaltenes. Asphaltenes
are complicated to characterize by determining their com-
position on a molecular basis, but the literature broadly
accepts that they can be described as a fraction of crude
oil soluble in toluene and insoluble in n-alkanes (pentane,
hexane, heptane) [28]. They have motivated many stud-
ies with interest in developing models for their structure
and behavior due to all the problems they can cause dur-
ing their transportation and refining such as precipitation
during the oil processing [29]. This precipitation issue
is a recurrent problem due to the growing market of the
production of crude oil in deep waters, whose conditions
are favorable to precipitation [30]. As an example, as-
phaltene precipitation due to pressure drop can clog oil
production equipment and cause a growth in the cost of
production [31]. All these factors make the understand-
ing of the behavior of asphaltenes in different chemical
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and physical environments relevant to the oil industry. As
we said, asphaltene characterization still faces some is-
sues. Hence, we choose to use polycyclic aromatic hy-
drocarbons (PAHs), which have well-defined characteris-
tics, to initially test the efficiency of the SAFT-γMie force
field in describing the solvation phenomenon. PAHs are a
group of organic compounds that have fused rings, carbon
and hydrogen in their structure [32]. The ones utilized
in this work were phenanthrene, anthracene, and pyrene
since they share similarities with asphaltenes regarding
their solubility. In this context, we selected compounds
that are used to characterize asphaltenes (toluene, hexane)
as solvents in our free energy calculations. We also tested
the anti-solvent/solvent effect of carbon dioxide due to its
influence in asphaltene precipitation during the oil pro-
cessing [33]. With these calculations of solvation free en-
ergies with the SAFT-γ Mie model, we intend to improve
this force field and provide satisfactory solvation free en-
ergy estimates of PAHs with a coarse-grained model. The
success of the description of small asphaltene-like com-
pounds by this force field can then open up the possibility
of obtaining satisfactory results for more complex asphal-
tene models with a force field with a low computational
cost.

2. Computational Methods

2.1. SAFT-γ Mie Force Field

The SAFT-γ Mie force field uses a top-down coarse-
graining methodology in its parameterization. This
methodology aims to obtain the intermolecular parame-
ters from macroscopic experimental data such as fluid-
phase equilibrium or interfacial tension data. The idea is
that the force field parameters estimated with the SAFT-
VR Mie EoS [34] can be used in molecular simulations
since both the equation of state and the force field use the
Mie potential as the intermolecular potential model:

UMie(r) =ε
λr

λr − λa

(
λr

λa

)( λa
λr−λa

) [(
σ

r

)λr −
(
σ

r

)λa
]
. (1)

The parameter ε is the potential well depth, σ is the seg-
ment diameter, r is the distance between the spherical seg-
ments, λr is the repulsive exponent, and λa is the attractive

exponent. This force field has the advantage of incorpo-
rating the degrees of freedom provided by the use of the
Mie Potential [23]. This flexibility offers the exploration
of a vast parameter space without using an iterative sim-
ulation scheme [19]. Despite these advantages, the force
field can be restricted by the shortcomings of the equation
of state. As an example, the lack of an association term
in the equation can cause an inadequate representation of
the properties of hydrogen bonding compounds.

Each substance has initially five parameters to be esti-
mated (ms, σ, ε, λr, and, λa) according to Eq. 1. The
number of segments is usually fixed in an integer value
so as this parameters can be used in molecular simula-
tions. The attractive parameter is generally fixed due to
its high correlation with the repulsive parameter. Usually,
the chosen value for this parameter is 6, corresponding
to the London model, which is a good representation of
the dispersion scale of most simple fluids that do not have
strong polar interactions [35, 23]. There are two strategies
to obtain these parameters: one is by fitting the SAFT-VR
Mie EoS to experimental data such as vapor pressure and
liquid density [36], and the other one is by using corre-
sponding states parametrization [37]. Here, the first strat-
egy was used to find the parameters for phenanthrene with
vapor pressure data [38, 39] following the methodology
proposed by Müller and Mejı́a [22]. The parameteriza-
tion was carried out with the number of segments equal
to five and with a geometry such as that in Figure 1, since
this level of coarse-graining was also used for a similar
molecule (anthracene) in the original paper. We also show
in Figure 2 the vapor pressure curve obtained using the
EoS with the parameters estimated here.

Figure 1: Coarse-graining level and geometry chosen for phenanthrene.

The parameters for the other compounds were retrieved
from the literature, and all these parameters are exposed in
Table 1. Only when modeling a mixture with the SAFT-γ
Mie force field, the use of combining rules is necessary
since the segments are equal. The mixing rules for this
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Figure 2: Vapor pressure of phenanthrene (Pv) calculated using the
SAFT-VR Mie EoS with the parameters estimated here.

force field can be seen in Eqs. 2 to 4 [34].

σi j =
σii + σ j j

2
, (2)

λk,i j − 3 =

√
(λk,ii − 3)(λk, j j − 3), k = r, a, (3)

εi j = (1 − ki j)

√
σ3

iiσ
3
j j

σ3
i j

√
εiiε j j, (4)

The ki j is a binary interaction parameter to correct the
deviations of the mixing rule. This parameter can be de-
scribed as scaling factor. It accounts for the interactions
among chemically distinct compounds, which are not ex-
plicitly considered by the SAFT-VR Mie EoS. These mix-
ing rules were the ones available in the literature and em-
ployed by other papers that used this force field. There-
fore, we ended up using Eqs. 2 to 4 in our study. How-
ever, the binary interaction parameter was only necessary
for aqueous mixtures in our study.

2.2. Expanded Ensemble
The strategy chosen in this work to calculate the sol-

vation free energies was to use an alchemical method in
which the solute molecule is gradually inserted in the sol-
vent using a thermodynamic path [41]. Each insertion or

Table 1: SAFT-γ Mie Force Field for each substance used in this work.

ms ε/κb (K) σ(Ȧ) λr

Water [26] 1 305.21 2.902 8.0
Propane [23] 1 426.08 4.871 34.29

Carbon dioxide [23] 2 194.94 2.848 14.65
Hexane [23] 2 376.35 4.508 19.57
Octanol [40] 3 495.71 4.341 28.79
Toluene [22] 3 268.24 3.685 11.80
Benzene [22] 3 230.30 3.441 10.45
Pyrene [22] 4 459.04 4.134 15.79

Anthracene [22] 5 259.68 3.631 9.55
Phenanthrene 5 262.74 4.077 9.55

alchemical state is represented by a coupling parameter,
λ, that ranges from 0 to 1. When λ = 0, there is no inter-
action with the solvent and, when λ = 1, the interactions
are fully activated. Since the force field used does not ex-
plicitly take in consideration the charges, the interactions
are only due to the Mie potential. For the coupling of the
Mie Potential, we propose a generalized softcore Mie po-
tential based on the softcore potential of Beutler et al. [42]
:

U sc
Mie(r) =λε

λr

λr − λa

(
λr

λa

)( λa
λr−λa

)

·


1
[
α(1 − λ) + (r/σ)λa

]λr/λa
− 1
α(1 − λ) + (r/σ)λa

}
.

(5)
where α is a constant whose value is normally assumed
to be 0.5. Instead of performing various simulations at
each alchemical state to obtain the potential energies of
Eq. 5, we decided to use the Expanded Ensemble method
[2] since it allows a non-Boltzmann sampling scheme of
different states in a single simulation. In this scheme, the
sampling is done by biasing the phase space exploration
process with weights not related to the statistical ensem-
ble. The partition function of the statistical expanded en-
semble, ZEE , is obtained from the probability distributions
corresponding to each λ. Hence, ZEE is defined as a sum
of subensembles Zi in different values of λ, that is,

Z =

N∑

i=1

Ziexp(ηi), (6)
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where N is the number of alchemical states, ηi is the arbi-
trary weight of the subensemble at each state, and Zi is the
configurational partition function of state i. Here, we fol-
lowed the flat-histogram approach [43, 44, 45] to calculate
the weights. This strategy aims to obtain adequate sam-
pling by ensuring that all the states have an equal number
of visits, i.e. the ratio of the probability of sampling state
i (πi) to the probability of sampling state j (π j) is equal
to one. Using this relation, the following equation can be
obtained:

(ηi − η j)k+1 = β(Gi −G j)k. (7)

Eq. 7 proposes that the choice of weights is depen-
dent on the free energies that we are attempting to obtain.
This equation is then solved iteratively with trial simula-
tions. For the first simulation, the values of η are set to
zero, and the histogram of the states visited is obtained.
With this histogram, it is possible to estimate the free en-
ergy differences and, since the weights are related to the
free energies by Eq. 7, the next values of η can be calcu-
lated. This iteration goes on until a uniform distribution
is attained. The weights found are then used in a longer
simulation to obtain the final solvation free energies. The
choice of the λ set corresponding to overlapping alchem-
ical states are crucial to acquire accurate free energy dif-
ferences. In this work, the method chosen to obtain the
optimal staging of the λ domain is the one developed by
Escobedo and Martinez-Veracoechea [46] with a basis in
the study of Katzgraber et al [47]. This method targets
”bottlenecks” in the simulation. It does that by optimiz-
ing λ through the minimization of the number of round
trips per CPU time between the lowest (0) and highest (1)
values of λ. The optimization is specifically done by max-
imizing the steady-state stream φ of the simulation, which
”walks” among the values of λ. This flow is estimated
from a Fick’s diffusion type of law:

φ = D(Λ)Π(Λ)
dx(Λ)

dΛ
. (8)

In the equation above, Λ is the actual continuous value
of the coupling parameter. This continuous function of
λ′s is obtained by interpolating the λ set linearly. D(Λ)
is the diffusivity at state Λ and x(Λ) is the fraction of
times that the trial simulation at state Λi has most recently
visited the state λ = 1 as opposed to state λ = 0. The

derivative dx(Λ)/dΛ is approximated with the central fi-
nite differences method. Finally, Π(Λ) is the probability
of visiting Λ:

Π(Λ) =
C
′
Π̄(λ)

Λi+1 − Λi
. (9)

The C
′
term in the equation above represents a constant

and Π̄(λ) is the arithmetic average of the frequency of vis-
its to the Λ state:

Π̄i(λ) =
πi+1 − πi

2
. (10)

The φ is maximum when the optimal probability Π
′
(Λi)

of visiting state Λi is proportional to 1/
√

D(Λ) [48]. With
that information, it is possible to estimate the diffusivity
using one trial simulation with the following equation:

D(Λ) =
Λi+1 − Λi

Π̄(λ)dx(Λ)/dΛ
. (11)

Hence, we can calculate Π̄ and, consequently, the cu-
mulative probability, which is used to obtain the new λ
state, by

Φ =

∫ λ=1

λ=0
Π
′
(Λi)dΛ =

i
K
, (12)

where K is the total number of λ states. In order to
carry out our solvation free energy simulations, we ob-
tained these cumulative probabilities for every λ set we
estimated. A graphical demonstration of the relation be-
tween the optimized coupling parameters and the cumu-
lative probability of Eq. 12 is presented in our results in
Figure 3.

3. Molecular Dynamics Simulations

Using the parameters of Table 1, we carried out molec-
ular dynamics simulations to obtain the potential energies
at each alchemical state. The chosen software package
to perform the simulations was LAMMPS [49]. In this
package, the equations of motion were integrated with the
velocity-Verlet algorithm [50] with a time step of 2 fs.
As required by the coarse-grained model, molecules with
more than one bead were treated as rigid bodies. The ther-
mostat and the barostat were the Nosé-Hoover chains as
described in Hoover [51] and Martyna et al. [52] with
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damping factors of 100 and 1000 time steps, respectively.
For the rigid bodies in our simulations, we used the rigid-
body algorithm of Kamberaj et al [53]. The potential cut-
off was equal to 20 Å [22] with a neighbor list skin of 2
Å. The initial configurations of the solvated systems were
also generated using the Playmol package [54], which is
integrated with the Packmol package [55]. For the bi-
nary mixtures, one molecule of solute and a varying num-
ber of solvent molecules- 700 molecules of toluene, 700
molecules of octanol, 1024 molecules of hexane, 3000
molecules of water - were randomly added to a cubic
box. Besides the systems with pure substances acting
as solvents, we performed simulations to study the solva-
tion free energy of phenanthrene in a mixture of toluene
and carbon dioxide with different weight fractions (wCO2 ).
The system consisted of one molecule of phenanthrene for
all the cases and 123 molecules of CO2 and 618 molecules
of toluene (wCO2 = 0.087); 166 molecules of CO2 and
589 molecules of toluene (wCO2 = 0.119); 232 molecules
of CO2 and 545 molecules of toluene (wCO2 = 0.169);
380 molecules of CO2 and 446 molecules of toluene
(wCO2 = 0.289). These substances used in our study were
selected with the intention of testing the force field with
standard sets used as a benchmark in solvation free energy
calculations, with aromatic substances used as models to
asphaltenes and with water, which probably is the most
used solvent in computational studies.

All simulations were performed with the constant tem-
perature and pressure values of 298 K and 1 bar, except
the ones containing carbon dioxide. These had the tem-
perature of 298 K and the pressure of the experimental
liquid-phase equilibrium corresponding to each compo-
sition of the system CO2+toluene [56]. For all simula-
tions, the initial box was equilibrated at the NPT ensem-
ble for 2 ns, and the resulting configurations were used as
the initial configuration of the expanded ensemble simu-
lations. These were carried out with the LAMMPS user
package for expanded ensemble simulations with the Mie
potential developed by our research group, available at
https://github.com/atoms-ufrj/USER-ALCHEMICAL.

During these expanded ensemble simulations, the sam-
pling of a new alchemical state was tried at every 10 MD
steps. To define the optimal values of λ and η correspond-
ing to each state, trial simulations, having around 9 ns of
production time, were carried out. In the first simulation,
we chose the group of λ values arbitrarily, and we either

set all η′s to zero or assigned values previously found for
similar solute-solvent pairs. The subsequent group of η′s
were estimated with the flat histogram approach (Eq. 7).
We then performed another trial simulation with the new
weights. The results of this simulation were used to opti-
mize the group of λ′s by minimizing the number of round
trips, as described in the preceding section. The η′s cor-
responding to the newest group of λ′s were interpolated
linearly from the free energy differences. With the final
values of η and λ defined for each mixture, larger simula-
tions with a production time of 20 ns were carried out.

Since the employed force field considers that the beads
do not have charges, there are no Coulombic interac-
tions, and the only contribution to the total potential en-
ergy is due to the softcore potential of Eq. 5. The post-
processing method used to effectively calculate free en-
ergy differences with the potential energies obtained from
the expanded ensemble simulations was the Multistate
Bennett Acceptance Ratio (MBAR) method. The soft-
ware alchemical-analysis [41] was utilized to obtain the
∆Gsolv with MBAR and to assess the quality of the results.
After the first estimations, we realized that the binary in-
teraction parameter of Eq. 4 was necessary for systems
containing water. Hence, we estimated ki j for these pairs
and, for all the other pairs, we set ki j to zero. The esti-
mation was done by performing trial expanded ensemble
simulations in three values of ki j, as suggested by Ervik
et al. [57]. With the ∆Gsolv obtained with these simula-
tions, we did a linear fit to obtain the refined value of the
parameter. We used this strategy because the estimation
with SAFT-VR Mie EoS gave poor results for the hydra-
tion free energies.

4. Results and discussion

4.1. Solvation free energies
Our primary intention with this study is to assess the

capability of the SAFT-γ Mie force field to represent sol-
vation free energies. Hence, we chose benchmark solutes
used in the literature (benzene, propane) and aromatic so-
lutes (benzene, pyrene, phenanthrene, anthracene), and,
for the solvents, we picked non-polar (hexane), aromatic
(toluene), and hydrogen bonding (1-octanol, water) sub-
stances. The solvation free energy simulations for the
pairs chosen were carried out with binary interaction pa-
rameters equal to zero since these parameters were not
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necessary according to our preliminary studies. Since the
force field does not account for charges, we only calcu-
lated the Mie contribution (Eq. 5) to the solvation free
energy. A total of 15 to 18 λ′s, depending on the solute-
solvent pairs, and their respective η′s were estimated as
described in the previous sections. The simulations car-
ried out using these optimized weights deviated from the
flat-histogram requirement of equal number visits by an
average of 5% for all of the pairs solvent+solute. The
final λ set for all the pairs was found using the cumu-
lative probability distribution (Eq. (12)). For the hex-
ane(solvent)+benzene(solute) pair, the probability distri-
bution can be seen in Figure 3. From now on we are go-
ing to use the terminology solvent+solute. The optimized
values of λ and η for this pair and all the other pairs are
exposed in Tables A.6 to A.9, available in the Appendix.
By observing the coupling parameters found for all the
pairs, we can see that they are concentrated on the re-
gion with a steeper slope as it is expected in this method.
After the expanded ensemble simulations with the opti-
mized intermediate states and weights, we calculated the
solvation free energies with MBAR. The results obtained
and the absolute deviations to experimental data [58] are
available in Table 2. The numerical values for solvation
free energies in hexane had overall smaller absolute de-
viations from experimental data than the deviations in the
other solvents. Additionally, this force field presented bet-
ter results for the pair hexane+benzene than the TraPPE
force field (- 4.35 ± 0.05 kcal/mol) [13] and the ELBA
coarse-grained force field (-2.92 ± 0.01 kcal/mol) [18].
It’s also important to point out that the solvation free en-
ergies with these force fields were obtained with thermo-
dynamic integration, which is different from the method
used here. TraPPE is a force field parametrized with fluid-
phase equilibria data that uses the Lennard-Jones potential
to describe the non-bonded interactions. In the cited pa-
per, they used the united-atom description of the TraPPE
force field for the alkyl group, the all-atom description for
the polar groups and the explicit-hydrogen approach for
the aromatic groups. In the explicit-hydrogen approach,
the interaction sites for all hydrogen atoms, some lone
pair electrons, and bond centers are accounted for [59].
In turn, the ELBA force field is a coarse-grained model
that comprises six independent parameters. This force
field models three carbons as one Lennard-Jones site and
one water molecule as a single Lennard Jones site with a

point-dipole. We also present the solvation free energies
corresponding to each alchemical state (λ) for all the pairs
studied here in Figures 4 to 6. Specifically observing the
solvation free energy in hexane (Figure 4), we can see the
effect of the molecule’s size on the entropic region of the
free energy curve. This region is corresponding to the first
values of λ where the cavity required for the insertion of
the solute is formed.

Figure 3: Cumulative probability used to obtain the optimized values of
λ′s for the pair hexane+benzene.

We expected that a force field based on an EoS that does
not explicitly account for hydrogen bond would not per-
form well for 1-octanol in mixtures since the parameteri-
zation of this molecule did not explicitly account for the
interactions of association. All the beads representing 1-
octanol have the same intermolecular parameter, and there
is no distinction between the polar and apolar groups.
Despite this, the solvation free energies of propane and
phenanthrene in 1-octanol lied in the desired deviation
range of 1-2 kcal/mol [60]. For propane, the observed de-
viation in solvation free energies was much smaller when
compared to the other solutes, which can be attributed to
the non polarity of propane and its smoother free energy
curve, presented in Figure 5. Such solvation free energy
of propane in 1-octanol also had a smaller deviation than
the prediction of the ELBA force field (-0.92 ± 0.01) [18].
The absolute deviation of the solvation free energy com-
puted for anthracene in 1-octanol is much higher than the
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Table 2: Calculated and experimental values for the solvation free energies (kcal/mol) of solutes in non-aqueous solvents.

Solute Solvent ∆Gexp
solv ∆GMie

solv Absolute
Deviation

benzene hexane -3.96 -3.76 ± 0.01 0.20
pyrene hexane -11.53 -10.82 ± 0.02 0.71

phenanthrene hexane -10.01 -9.16 ± 0.01 0.85
propane 1-octanol -1.32 -1.36 ± 0.03 0.04

anthracene 1-octanol -11.72 -8.12 ± 0.03 3.61
phenanthrene 1-octanol -10.22 -8.34 ± 0.03 1.47

pyrene toluene -12.86 -11.74 ± 0.01 1.11
anthracene toluene -11.31 -9.90 ± 0.01 1.41

Figure 4: Representation of solvation free energies of different solutes
in hexane estimated at each alchemical state.

one calculated for phenanthrene in 1-octanol. The an-
thracene and phenanthrene molecules have the same ge-
ometry (Figure 1) in the SAFT-γ Mie model, although
anthracene is a linear molecule and phenanthrene is not,
and also similar physical properties. Hence, this high de-
viation of the solvation free energy of anthracene in 1-
octanol may indicate a problem in the geometry chosen
for anthracene in the SAFT-γ Mie force field and the im-
portance of the geometry in modeling the molecules with
this force field.

The results also indicate a reasonable capability of the
force field for predicting the solvation free energies of

Figure 5: Representation of solvation free energies of different solutes
in 1-octanol estimated at each alchemical state.

polyaromatic solutes in aromatic solvents. The influ-
ence of the molecular geometry on the solvation free en-
ergy curves was the same as the one observed for other
solvents, as can be seen in Figure 6. We also calcu-
lated the ∆Gsolv for phenanthrene in pure toluene and in
toluene+CO2 mixtures. To the best of our knowledge,
there are no available experimental data for these solva-
tion free energies, but the previous results for phenan-
threne in other solvents showed that the force field is ad-
equate to describe the solvation phenomenon of phenan-
threne in a pure aromatic solvent. Hence, we decided to
carry out a qualitative study of the influence of CO2 in the
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Figure 6: Representation of solvation free energies of different solutes
in toluene estimated at each alchemical state.

solvation free energies of phenanthrene in toluene in order
to evaluate the description of this system with the SAFT-
γ Mie force field. The results for these sets are exposed
in Table 3. The increase of the mass fraction of CO2 in
toluene caused a small effect on the solvation free ener-
gies in the range of weight fractions (0.087-0.289) stud-
ied in this dissertation. First, the ∆Gsolv decreased with
the increase of wCO2 up to 0.119. After this, the effect
was reversed, and carbon dioxide became an anti-solvent.
Soroush et al. [33] reported that asphaltene precipitation
occurs when carbon dioxide mass fractions became higher
than 0.10 in the system asphaltene+toluene+carbon diox-
ide, which is in agreement with the anti-solvent effect of
carbon dioxide observed in the values calculated here. Al-
though we noticed the anti-solvent effect, the differences
observed are pretty small. These minor differences may
indicate that the effect of CO2 is negligible in the solva-
tion of phenanthrene in toluene when using the SAFT-γ
Mie force field to model the molecules. Nevertheless,
more studies need to be done to make a safe assertion
about it. It is also worth remarking that this is a quali-
tative study due to the lack of experimental data. Overall,
the methodology proposed by the SAFT-γ Mie force field
was satisfactory in predicting the solvation free energies
of the pairs solvent-solute studied here.

Table 3: Calculated values for the solvation free energies (kcal/mol) of
phenanthrene in toluene+CO2.

wCO2 ∆GMie
solv

0.0 -10.65 ± 0.02
0.087 -10.73 ± 0.02
0.119 -10.78 ± 0.02
0.169 -10.71 ± 0.02
0.289 -10.69 ± 0.02

4.2. Hydration free energies

Water is a solvent extensively used in experimental and
computational studies. Because of this importance and
the fact that water has unique properties, such as density
maximum at 277 K and increased diffusivity upon com-
pression, developing an accurate computational model for
water is an ongoing quest [61]. Hence, we also calculated
the solvation free energies in water (hydration free ener-
gies) with the SAFT-γ Mie force field. With these calcu-
lations, we intend to verify if this coarse-grained model
would represent the water molecule correctly and would
be a good alternative to decrease the computational cost
of solvation studies with asphaltene models. The simula-
tions with water as a solvent were carried out using widely
studied solutes (propane) and aromatic solutes (benzene,
toluene, and phenanthrene) with a set of fifteen intermedi-
ate states. We obtained these sets of λ and ηwith the same
methodology used to acquire the sets for the solvation free
energies with non-aqueous solvents, and they are exposed
in Table A.10, available in the Appendix. At first in our
simulations, the binary interaction parameters of all aque-
ous mixtures were set to zero, but preliminary results for
hydration free energies, displayed in Table 5, exhibited
a high deviation from experimental data [62, 63]. With
these results, the need for binary interaction parameters
became clear. First, we estimated ki j with the SAFT-VR
Mie EoS and experimental vapor pressure data, but this
strategy also provided results that had high absolute de-
viations from the experimental data. Therefore, we used
the approach of estimating ki j with the output from sol-
vation free energy calculations with molecular dynamics,
as described in the last paragraph of Section 3. We ini-
tially found individual values for the interaction param-
eter of each pair, but, since the parameters for aromatic
solutes were very similar (0.148, 0.162, 0.152), we aver-
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Table 4: Binary interaction parameters employed.

Pair ki j

water+propane 0.067
water+aromatic 0.154

aged these values. By doing that, we obtained a general
parameter for the water+aromatic pairs, which is exposed
in Table 4. Also in this table, we display the binary inter-
action parameter for the pair water+propane.

The relatively large ki j value of the interaction between
aromatic solutes and water can be related to the lack of
a term in the SAFT-γ Mie to account for the interaction
associated with a hydrogen bond substance. Actually, the
SAFT-VR Mie has an association term [34], but it was not
incorporated in the force field. The SAFT-γ Mie model
for water [26] has two different temperature-dependent
sets of parameters. The parameters utilized in this work
were those estimated with experimental interfacial tension
data. Hence, we tested the only binary interaction pa-
rameter for water+toluene estimated with MD interfacial
data available in the literature [27]. Nevertheless, the re-
sult also had a high absolute deviation, and this parameter
could not be transferred to the calculation of the solvation
free energy of toluene in water.

These issues faced by SAFT-γ Mie model can also be
related to the problems of modeling water with a coarse-
grained force field. One of the main difficulties is the
choice of which water molecules are going to be rep-
resented by which specific beads since water molecules
move independently and interact by by non-bonded in-
teractions [64, 61]. The SAFT-γ Mie water considers
that one water molecule corresponds to one bead. This
strategy only saves a small amount of simulation time,
but it can predict properties at physiological temperatures
unlike other more aggressive models such as the MAR-
TINI, which considers that one bead represents various
water molecules. In light of all these problems related to
modeling the water molecule, the SAFT-γ Mie force field
appears to be a good alternative when working close to
room temperatures, but the necessity of additional param-
eters estimated with molecular simulation indicates severe
flaws in the methodology. This estimation of the binary
parameter increased significantly the simulation time re-
quired to calculate the hydration free energies, since we

had to carry out three additional simulations for every
pair water-solute and then three additional simulations for
the three water+aromatic solutes in order to test the aver-
aged binary interaction parameter. If these simulations
are necessary for every time a new mixture with water
is going to be studied with the SAFT-γ Mie force field,
the use of this model can become impractical. With this
idea in mind, a useful investigation to be made is to check
how much other pairs of water+aromatic solute can be
modeled using the binary interaction parameter estimated
here. Using these binary interaction parameters calculated
with data from molecular dynamics, we then obtained the
final hydration free energies presented in Table 5.

Hydration free energies calculated using the SAFT-γ
Mie force field with ki j , 0 had low absolute deviations
from the experimental data, as expected since the param-
eters were adjusted to fit these experimental data. Hydra-
tion free energies have also been calculated for the pairs
studied here by Genheden [18] with the ELBA force field
and by Mobley and Guthrie [8] with the GAFF force field
for the solutes and with the TIP3P model for water. The
GAFF (General Amber Force Field) force field is an all-
atom model that consists of bonded and non-bonded pa-
rameters and is suitable for the study of a significant num-
ber of molecules. In turn, the TIP3P model considers that
water is a rigid monomer represented by three interacting
sites with non-bonded interactions and Coulombic inter-
actions [65]. Both the GAFF and the TIP3P models use
the Lennard-Jones potential to calculate the non-bonded
interactions.

Comparing the three aforementioned force fields, the
root mean square error (RMSE) of all the pairs tested with
the SAFT-γ Mie model was 0.24, the RMSE for hydra-
tion free energies obtained with the GAFF force field was
0.73, and that for the ELBA coarse-grained force field was
0.44. The difference in between the results of GAFF (-
5.26±0.03) and SAFT-γ Mie (-3.47 ± 0.02) force fields
is significantly high for phenanthrene, hence the coarse-
grained force field with a binary parameter is preferred
if the application requires a high level of accuracy. The
results also indicated that the SAFT-γ Mie model with
the binary interaction parameter performed better than the
ELBA force field in modeling the solvation phenomenon
of the pairs studied in this work, but performed worse with
the binary parameter set to zero. This difference in perfor-
mance occurred despite the fact that both the SAFT-γ Mie
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Table 5: Calculated and experimental hydration free energy differences (kcal/mol) of solutes in water.

Solute ∆Gexp
solv ∆GMie

solv
ki j = 0

Absolute
Deviation

∆GMie
solv

ki j , 0
Absolute
Deviation

propane 2.00 ± 0.20 1.10 ± 0.01 0.90 2.01 ± 0.01 0.01
benzene -0.86 ± 0.20 -4.45 ± 0.03 3.59 -1.12 ± 0.01 0.26
toluene -0.83 ± 0.20 -10.98 ± 0.30 10.15 -0.84 ± 0.01 0.01

phenanthrene -3.88 ± 0.60 -10.90 ± 0.04 7.12 -3.47 ± 0.02 0.41

Figure 7: Representation of hydration free energies of different solutes
estimated at each alchemical state.

and ELBA models have the same level of coarse-graining
for the solvent (one bead represents one water molecule).
Therefore, the choice between the two coarse-grained
models is dependent on the availability and transferability
of binary interaction parameters of the Mie Model. We
also present, for the SAFT-γ Mie force field, the hydra-
tion free energy profiles in Figure 7. Bigger molecules
had steeper free energy profiles, as it was for the solva-
tion free energy study in other solvents. We also observe
that the hydration free energy for the first non-zero λ is
negative for benzene and toluene when a positive value is
expected since free energy is required for cavity formation
in the solvent for the insertion of the solute. This anomaly
can be caused by the fact that the exponential parameters
in the Mie potential compensate for cavity formation.

The results found here for both the solvation free en-
ergies and hydration free energies fulfilled the intentions

of this dissertation. We assessed the prediction capability
of the SAFT-γ Mie force field and provided satisfactory
solvation free energy estimates of PAHs using a coarse-
grained force field. In addition to that, we found flaws in
the methodology used by the SAFT-γ Mie force field to
model the water molecule. Hence, these shortcomings of
this model can now be addressed, and the force field can
even be improved by using other mixing rules to avoid the
use of a binary parameter or, even, using hydration free
energy estimates in the parameterization of water. These
results also encourage us to calculate solvation free ener-
gies of more complex molecules mimicking asphaltenes
in non-aqueous solvents in future studies.

5. Conclusions

This study consisted in the study of solvation free en-
ergy calculations of aromatic solutes in different solvents
by using the SAFT-γ Mie coarse-grained force field. Sol-
vation free energy studies are mostly done using water
as a solvent and with all-atom force fields based on the
Lennard-Jones potential. Therefore, with this study, we
were able to provide data about the capability of a coarse-
grained force field based on the Mie potential in calcu-
lating solvation free energies. Additionally, the solvation
free energy estimations carried out here can help improve
the SAFT-γ Mie force field since these calculations are
helpful in identifying errors and shortcomings in the mod-
eling process. The SAFT-γ Mie uses the SAFT-VR Mie
EoS in its parameterization, which results in a relatively
straightforward top-down method of obtaining parame-
ters. Following this strategy, the phenanthrene parame-
ters, which were not available in the original database of
this force field, were obtained using vapor-liquid equilib-
rium data.
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To perform our expanded ensemble simulations, we op-
timized the coupling parameters and their respective sim-
ulation weights. The resulting potential energies from the
expanded ensemble simulations then served as input to
estimate solvation free energies with the MBAR method.
The results for non-aqueous solvents had absolute devia-
tions from the experimental data of less than 2.0 kcal/mol,
except for the pair 1-octanol+anthracene. We also ob-
served the geometry effect on the free energy curves -
larger molecules had steeper curves and more substantial
absolute deviations. The influence of carbon dioxide on
the solvation free energy of phenanthrene in toluene was
found to be negligible according to the SAFT-γ Mie force
field. Hydration free energy calculations with the SAFT-
γ Mie model required the use of relatively large values of
ki j to produce satisfactory results. We chose to estimate
the parameter with the output from molecular dynamics
data since the strategy of using the SAFT-VR Mie EoS
provided high absolute deviations from the experimental
data. This necessity of one additional parameter probably
happens due to the lack of a term to account for the hy-
drogen bond in the EoS on which this force field is based
and due to problems associated with the coarse-graining
of water molecules. The results obtained with ki j esti-
mated with MD output were satisfactory, the absolute de-
viations from the experimental data found were smaller
than the ones for the GAFF and ELBA force fields.

Overall, the SAFT-γ Mie force field proved to be a suit-
able model to represent the solvation phenomenon of non-
aqueous solvents. It correctly described solvation free en-
ergies of solutes mimicking asphaltenes dissolved in hex-
ane, toluene, 1-octanol. However, the calculation of hy-
dration free energies required the use of a binary inter-
action parameter estimated with MD output, which in-
creased the simulation time significantly. This fact ev-
idenced flaws in the methodology used by the SAFT-γ
force field and raised questions about the feasibility of
this model for hydration free energy calculations. Never-
theless, the SAFT-γ Mie force field for water used here
does not predict freezing at room temperature as other
force fields do, which is essential for our hydration free
energy calculations. Therefore, it would be relevant to
test if the binary interaction parameter for our aromatic
solutes estimated here can be used in hydration free en-
ergy calculations of other aromatic solutes and if we could
use MBAR to obtain the ki j through reweighting. Hence,

we would only need to carry out molecular dynamics sim-
ulations with one value of ki j, and then use this output
to estimate with MBAR the results with other k′i js. We
also have some ideas that could be developed in the fu-
ture using the results from this dissertation. The SAFT-γ
Mie force field could be used to model larger asphaltene
models and, consequently, increase the scale of the sim-
ulations we performed. Additionally, it would be a valid
investigation to study new methodologies to calculate sol-
ubility with solvation free energies using the SAFT-γ Mie
force field.
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Appendix A.

Table A.6: Optimized values of λ and η for the hexane+solute pairs.

benzene pyrene phenanthrene
λ η λ η λ η

0.000 0.000 0.000 0.000 0.000 0.000
0.065 0.708 0.076 4.234 0.090 1.981
0.112 1.385 0.107 5.620 0.132 3.461
0.15 1.892 0.132 6.499 0.161 4.494

0.188 2.399 0.152 6.690 0.185 5.185
0.226 2.519 0.170 6.643 0.205 5.552
0.264 2.457 0.189 6.461 0.224 5.725
0.304 2.367 0.213 6.091 0.244 5.722
0.356 1.921 0.242 5.566 0.268 5.523
0.411 1.411 0.280 4.729 0.305 4.975
0.492 0.524 0.355 2.853 0.372 3.576
0.588 -0.663 0.483 -0.778 0.500 0.297
0.69 -2.016 0.678 -6.947 0.560 -1.390

0.824 -3.922 0.788 -10.631 0.722 -6.309
1.000 -6.583 1.000 -18.141 1.000 -15.448
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Table A.7: Optimized values of λ and η for the 1-octanol+solute pairs.

propane anthracene phenanthrene
λ η λ η λ η

0.000 0.000 0.000 0.000 0.000 0.000
0.027 3.126 0.078 3.932 0.049 2.578
0.050 5.109 0.111 6.178 0.091 5.663
0.073 6.093 0.130 7.426 0.125 8.575
0.095 6.570 0.143 8.201 0.144 10.069
0.117 6.826 0.154 8.717 0.157 10.978
0.142 6.956 0.164 9.085 0.169 11.599
0.174 6.969 0.174 9.357 0.180 12.040
0.215 6.847 0.184 9.556 0.192 12.340
0.269 6.554 0.197 9.676 0.206 12.499
0.337 6.050 0.214 9.681 0.225 12.478
0.427 5.228 0.238 9.490 0.253 12.161
0.545 3.955 0.274 8.958 0.298 11.280
0.720 1.843 0.326 7.906 0.371 9.406
1.000 -1.903 0.399 6.088 0.484 5.891

0.515 2.777 0.664 -0.516
0.695 -2.960 0.802 -5.908
1.000 -13.768 1.000 -14.073

Table A.8: Optimized values of λ and η for the toluene+solute pairs.

pyrene anthracene phenanthrene
λ η λ η λ η

0.000 0.000 0.000 0.000 0.000 0.000
0.090 2.563 0.119 0.218 0.136 0.726
0.130 4.338 0.174 1.210 0.191 2.307
0.154 5.439 0.209 2.052 0.223 3.430
0.172 6.181 0.236 2.664 0.246 4.233
0.188 6.670 0.261 3.122 0.264 4.780
0.204 6.986 0.283 3.378 0.281 5.149
0.222 7.121 0.306 3.449 0.299 5.354
0.244 7.025 0.332 3.311 0.318 5.389
0.278 6.520 0.360 2.936 0.340 5.222
0.340 5.010 0.399 2.209 0.372 4.717
0.462 1.247 0.466 0.567 0.425 3.440
0.616 -4.283 0.564 -2.211 0.524 0.444
0.788 -11.032 0.715 -6.983 0.701 -5.814
1.000 -19.814 1.000 -16.923 1.000 -17.803
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Table A.9: Optimized values of λ and η for the phenanthrene+CO2+ toluene mixture with different values of wCO2 .

wCO2 = 0.087 wCO2 = 0.119 wCO2 = 0.169 wCO2 = 0.289
λ η λ η λ η λ η

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.128 0.604 0.128 0.732 0.064 0.883 0.066 0.806
0.184 2.067 0.186 2.223 0.108 0.764 0.111 0.760
0.217 3.164 0.219 3.319 0.175 1.969 0.172 1.983
0.240 3.940 0.244 4.098 0.214 3.156 0.204 2.967
0.260 4.472 0.267 4.704 0.240 3.974 0.227 3.627
0.277 4.823 0.289 5.031 0.258 4.457 0.245 4.082
0.295 5.035 0.313 5.084 0.273 4.750 0.262 4.395
0.318 5.059 0.339 4.950 0.287 4.921 0.279 4.583
0.347 4.762 0.373 4.371 0.305 4.962 0.299 4.621
0.397 3.753 0.425 3.055 0.326 4.885 0.325 4.423
0.491 1.031 0.488 1.196 0.361 4.401 0.365 3.739
0.670 -5.148 0.525 -0.027 0.419 2.990 0.428 2.198
0.791 -9.713 0.730 -7.185 0.527 -0.299 0.530 -0.842
1.000 -18.098 1.000 -17.769 0.697 -6.180 0.701 -6.763

1.000 -17.998 1.000 -18.163

Table A.10: Optimized values of λ and η for the water+solute pairs.

propane benzene toluene phenanthrene
λ η λ η λ η λ η

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.107 2.673 0.193 -0.295 0.177 0.182 0.142 -2.462
0.157 4.703 0.279 1.468 0.262 2.432 0.256 0.597
0.186 6.047 0.324 2.931 0.307 4.244 0.319 4.504
0.210 7.148 0.357 4.168 0.336 5.552 0.358 7.762
0.230 8.017 0.381 5.091 0.360 6.696 0.384 10.104
0.250 8.883 0.405 5.891 0.380 7.558 0.407 12.185
0.272 9.291 0.427 6.443 0.400 8.233 0.427 13.607
0.294 9.700 0.449 6.770 0.422 8.678 0.446 14.490
0.328 9.900 0.476 6.900 0.443 8.859 0.469 14.834
0.381 9.930 0.506 6.805 0.473 8.810 0.494 14.667
0.484 9.463 0.555 6.392 0.514 8.452 0.533 13.832
0.623 8.195 0.653 5.109 0.606 7.148 0.620 11.069
0.781 6.378 0.810 2.421 0.755 4.273 0.806 3.279
1.000 3.333 1.000 -1.480 1.000 -1.547 1.000 -6.122
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