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Abstract 

Statistical Thermodynamics was used to derive an expression for hydrate enthalpy of dissociation. 

From this expression, a parameter regression methodology was proposed in which calorimetric 

experiments were included along with cage occupancies, guest mole fraction and equilibrium 

condition experiments.  

Since not all the experiments depend on the whole set of hydrate parameters, we developed a 

stepwise methodology that reduces parameter estimation problem to three simple sub-problems, 

with two of them being analytically solvable. The solution of the stepwise methodology is then the 

initial guess of the hydrate global parameter estimation that can be solved using a deterministic 

algorithm. 

From the parameter estimation, we observed that the hard-core sphere parameter of the Kihara 

potential was not statistically significant in the case studied here. It was rejected with a significance 

degree of 5%, which lead to the use of the Lennard-Jones potential.  

After estimating hydrate parameters for carbon dioxide and methane sI hydrates, we could relate 

hydrate enthalpy of dissociation to equilibrium conditions for this binary mixture. We found that 

the empirical law that states that enthalpy of dissociation of mixed hydrates increases with the 

increase of occupancy of the largest guest in the large cavity was verified only when the water-

poor fluid phase is a vapor. This means that fluid phases also have an important role in hydrate 

enthalpy of dissociation.  
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Resumo 

Termodinâmica Estatística foi utilizada para deduzir uma expressão para a entalpia de dissociação 

de hidratos. A partir desta expressão, uma metodologia de estimação de parâmetros foi proposta, 

na qual experimentos calorimétricos foram incluídos, ao lado de dados de fração de ocupação de 

cavidades, fração molar de formadores e condições de equilíbrio. 

Como nem todos os experimentos dependiam de todo o conjunto de parâmetros do modelo, 

propôs-se uma metodologia passo a passo, que reduz o problema de estimação de parâmetros de 

hidrato em três subproblemas, sendo que dois deles possuem solução analítica. A solução dada 

pela metodologia passo a passo é, então, utilizada como estimativa inicial do problema global de 

estimação de parâmetros, que pode ser resolvido usando um algoritmo determinístico. 

Da estimação de parâmetros, foi observado que o parâmetro hard-core do potencial de Kihara não 

foi estatisticamente significativo no caso estudado. Ele foi rejeitado com um grau de significância 

de 5%, o que levou ao uso do potencial de Lennard-Jones. 

Depois da estimação de parâmetros para hidratos sI do metano e do dióxido de carbono, a entalpia 

de dissociação de hidratos foi relacionada com as condições de equilíbrio para essa mistura binária. 

Verificou-se que a lei empírica que diz que entalpia de dissociação de hidratos mistos aumenta 

com o aumento da ocupação do maior formador na maior cavidade foi verificada apenas quando a 

fase fluida pobre em água é um vapor. Isso significa que as fases fluidas também têm um papel 

importante na entalpia de dissociação. 
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1. Introduction 

1.1. Gas Hydrates Research Panorama 

Gas hydrates are crystalline ice-like solid phases composed of a water lattice that encages 

guest molecules. The guest molecules capable of forming gas hydrates while in contact with water 

can be of distinct chemical natures. Hydrates of light hydrocarbons such as methane, ethane and 

propane, for example, have been widely studied by the specialized literature. Inorganic gases are 

also capable of forming hydrates and examples of guests molecules of that kind are nitrogen, 

carbon dioxide and hydrogen sulfide. As all the mentioned molecules occur abundantly in natural 

gas streams, the formation of gas hydrates is a safety concern in water-saturated systems in the oil 

and gas industry. 

Gas hydrates have two structures that are more commonly observed, namely structure sI 

and structure sII. There is also structure sH. However, this structure has only been observed in 

laboratory conditions and it is less important from the flow assurance point of view. These 

structures possess cavities in which the guest molecule is encaged. The distinct types of cavities 

of each of the three structures are shown in . 

  

Figure 1 - Cavities present in the different types of gas hydrate structures. Figure from 

Ballard (2002)1. 

 



2  

2 

 

 

Hammerschmidt2 was the first author to report the plugging of natural gas transmission 

lines in 1934. Ever since this pioneer work, the focus of gas hydrate research has been driven to a 

pragmatic industry-oriented concern: the flow assurance problem that they represent. According 

to Sloan and Koh3, Hammerschmidt’s work is a milestone, inaugurating modern hydrate research. 

Before 1934, hydrates were mostly regarded as scientific curiosity and, after that date, several 

authors (including Hammerschmidt himself2) made efforts to create empirical methods to predict 

hydrate formation4–7. 

It was only in 1957 that Barrer and Stuart proposed a phenomenological approach to 

predict hydrate formation conditions8. They were followed by van der Waals and Platteeuw in 

19599, who developed the model that is the most used today for the assessment of gas hydrate 

thermodynamic properties. Both models are based on Statistical Thermodynamics and they take 

much from the crystallographic advances that were made in the decades prior to their studies. In 

the 1950s, it was already known that there were at least two hydrate structures (namely, sI and sII)3 

and such information was critical to the development of rigorous thermodynamic models. Being a 

phenomenological model, the van der Waals and Platteeuw model has advantages over the 

empirical ones: it can be readily extended to hydrates of multiple guests; and its extrapolations to 

conditions other than the ones used to estimate the model parameters are more reliable. Sloan and 

Koh consider the van der Waals and Platteeuw model to be one of the best examples of the use of 

Statistical Thermodynamics to calculate macroscopic properties, as it is one of the few models of 

the kind ingrained in current industrial practice3. Indeed, if one considers the works of Bazant and 

Trout10 or Klauda and Sandler11, which calculate intermolecular potentials from Quantum 

Mechanics, and the work of Segtovich et al.12, focused on flash calculations, one can see that the 

van der Waals and Platteeuw model bridges several modeling scales. 

The van der Waals and Platteeuw model is based in a few main assumptions and they will 

be fully addressed in the Methodology chapter. Some modifications to their model have been 

proposed, being most of them related to the water-guest interaction. Some include the use of 

different intermolecular potentials13 and some other include different numbers of water shells in 

computing water-guest interaction14. Other authors have tried to get rid of one of the basic 

assumptions of the model, by considering a stretchable lattice15,16. Belosludov et al.17 also tried to 
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include guest-guest interactions to the model. However, all those efforts did not change the core 

Statistical Thermodynamics framework proposed by van der Waals and Platteeuw. 

1.2. Gas Hydrate Deposits as a Source of Energy 

Sloan and Koh3 also perceive another milestone in hydrate research. According to them, 

the timespan between the mid 1960 until today represents a third period in hydrate scientific 

literature, marked by the discovery of gas hydrate deposits in deep oceans, permafrost regions and 

extraterrestrial environments. One of the consequences of those discoveries was the opening of a 

new path for hydrate research. The aforementioned deposits could represent a new source of 

energy, since the amount of methane entrapped in them is indeed significant18. Collet and 

Kuuskra18 estimate that 20 million trillion cubic meters of natural gas are available in gas hydrates 

deposits worldwide. 

Conventional methods of extracting natural gas from hydrate deposits are based on 

shifting equilibrium conditions either by depressurization (a shift in pressure), by thermal 

stimulation (a shift in temperature) or by inhibitor injection (a shift in chemical potential)19. 

However, the simple decomposition of gas hydrates might lead to geological instabilities, posing 

safety and environmental concerns20. It should be noted that most of the guest molecules found in 

gas hydrates deposits (noticeably methane and carbon dioxide) are greenhouse gases.  

The role and importance of gas hydrate deposits in world climate is still not clear. Dickens 

and Forswall noted in 200921 that, despite being a major source of carbon-containing molecules, 

gas hydrates were still absent from most carbon cycle models at that time. Nonetheless, methane 

release from gas hydrates to the atmosphere could also have been responsible for several abrupt 

atmospheric changes in Earth’s ancient history in the Permian/Triassic boundary and in the 

Paleocene/Eocene boundary, for instance21. The analysis of polar ice cores by de Garidel-Thoron 

et al.22 have also shown that massive releases of methane from the dissociation of naturally 

occurring gas hydrates could be responsible for the rapid climate changes that occurred more 

recently, in the last glacial episode. Those findings and ideas support the so called “clathrate gun” 

hypothesis23: the dissociation of methane hydrates around 15 thousand years ago has resulted in 

global warming by a strong positive feedback process, in which the release of methane into the 

atmosphere led to higher temperatures and further hydrate decomposition. Hence, although hydrate 
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deposits might seem a promising alternative to resource-poor economies24, one should be aware 

of their possible role in a rising world temperature scenario. 

To avoid the release of greenhouse gases and maintain the geological stability of 

reservoirs, researchers have envisioned the production of methane from gas hydrate deposits by 

swapping it with carbon dioxide25. This methodology would allow for both methane exploitation 

and carbon dioxide capture, as CO2 would end up entrapped in the original gas hydrate deposits.  

According to Goel25, this technology would require investigation on the following topics: 

hydrodynamics of carbon dioxide injection and transport to the methane hydrate accumulation; 

thermodynamics of formation and dissociation of the hydrates of methane, carbon dioxide and 

their mixtures; and the kinetics of dissociation/formation of these hydrates and the conversion from 

methane hydrate to carbon dioxide hydrate. The understanding of the energetic aspects of 

swapping methane with carbon dioxide is especially important. The dissociation of gas hydrates 

is an endothermic process and the dissociation of CO2 hydrates is more endothermic than that of 

methane. This means that during the swapping process, heat would be released by the forming of 

CO2 hydrates and this could accelerate methane hydrate decomposition. 

1.3. Industrial Applications of Gas Hydrates 

Industrial applications of gas hydrates are also on the landscape of contemporary hydrate 

research. Three topics seem to be the center of research efforts, namely: natural gas storage as gas 

hydrates – the so-called solidified natural gas (SNG) technology; gas hydrates as secondary 

refrigerants in refrigeration cycles; and the use of gas hydrates in separation processes3. 

SNG technology is based on the physical properties of gas hydrates. As hydrates are 

composed of guest molecules entrapped in water, they provide high gas storage capacity, they are 

non-explosive and they are safe to handle26. According to Veluswamy et al.26, SNG technology is 

environmentally benign and cost effective, being a viable alternative to liquefied natural gas, 

compressed natural gas or adsorbed natural gas. However, it has one main drawback: kinetics of 

hydrate formation is slow. In stirred-tank reactors, hydrate formation is limited by the mass transfer 

in the water-gas interface and, in unstirred systems, gas hydrates form a film that offers resistance 

to the further growth of the hydrate phase. 
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In refrigeration cycles, gas hydrates would be used to increase the cycle efficiency. 

Fournaison, Delahaye and Chatti27 state that, to meet stricter emission regulations, the refrigeration 

industry ought to phase out primary refrigerants like CFCs and HCFs. One way to achieve such a 

goal is to design refrigeration cycles that use lower quantities of primary refrigerants. In order to 

do so, a secondary refrigerant fluid is needed and the use of slurries containing a material capable 

of undergoing phase changes is a convenient choice due to the latent heat of phase transition. 

Hence, hydrate slurries could be employed in those cycles and several studies have been focusing 

on understanding their thermodynamic and transport properties. 

Separation processes using gas hydrates focus on two main areas: the purification of 

gaseous streams and the desalinization of water. The former application is based on separating 

gaseous components that have a higher tendency to form hydrates from those that do not, at certain 

thermodynamic conditions. One example would be the removal of carbon dioxide from flue gas 

or syngas, in which CO2 would tend to form clathrates, while other gases such as hydrogen, 

nitrogen or sulfur oxides would not28. Eslamimanesh et al.29 also cite several examples of 

separation of gaseous streams. In the case of water desalination, a hydrate guest capable of forming 

hydrates at mild conditions would be put in contact with saltwater. After the hydrate formation, 

the fluid phase would be separated from the hydrate phase and the complete dissociation of the 

clathrates would provide salt free water, while the guest could be recycled.  

1.4. Calorimetric Modeling of Hydrate Formation 

In order to debottleneck the development of the hydrate applications cited before, 

calorimetric measurements have become popular techniques in the study of gas hydrates. They can 

be used to enlighten several aspects of hydrate formation and dissociation, as they provide 

information on thermodynamic equilibrium30–33, on hydrate formation kinetics34,35 and on guest 

replacement36. In 2018, several works focusing solely on experimentally assessing energetic 

aspects of formation, dissociation and guest replacement were published. Sun, Zhao and Yu37 have 

measured the dissociation enthalpy of methane hydrates in salt solutions. Kumar et al.38 have 

measured the enthalpy changes involved in the formation of mixed methane-tetrahydrofuran 

hydrates. Qing et al.39 have measured dissociation enthalpies of semi-clathrates containing carbon 
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dioxide and methane. Mu and von Solms40 focused on the swapping and dissociation of methane 

and carbon dioxide hydrates. These papers follow a trend from the previous years. 

However, the modeling of such energy changes associated with gas hydrate has mostly 

been done by applying the Clapeyron or the Clausius-Clapeyron equations to equilibrium 

conditions of temperature and pressure30,41–43. This is a somewhat limited approach, as it depends 

on numerically regressing values of enthalpy change for every possible gas hydrate mixture from 

its pressure-temperature diagram. In addition, it has been verified that hydrate formation is a 

coupled heat and mass transfer phenomenon44. Therefore, in order to correctly model it, one has 

to take into account the heat involved in the formation or dissociation of these solids. This shows 

the importance of accurate determination of calorimetric properties. 

One way to meet this demand is to use the widespread van der Waals and Platteeuw 

model9. Although it is mostly used for computing fugacities, the model derived by them is capable 

of relating all hydrate properties to those of pure water by using statistical thermodynamics and 

the hypothetical non-occupied hydrate phase (empty lattice) as a reference state. Here, we derive 

an expression for hydrate enthalpy of dissociation directly from the van der Waals and Platteeuw 

model. This expression is more useful than the Clausius equation, because it does not depend on 

regressing enthalpy changes from pressure-temperature diagrams, it does not introduce new 

empirical constants and it can be used with local equilibrium assumptions. 

Using this expression, direct measurements of hydrate enthalpy of dissociation can also 

be included in hydrate parameter estimation. This is a non-trivial task as infinite combinations of 

parameters can yield satisfactory predictions of hydrate thermodynamic properties45. Thus, in this 

work, we study the influence of calorimetric experiments as a new set of experiments in hydrate 

parameter estimation, along with cage occupancy and equilibrium (pressure vs. temperature) 

experiments. As a result, a new parameter estimation methodology is proposed and we apply it to 

simple and mixed sI hydrates of two components – methane and carbon dioxide. 

This work is divided as follows. Firstly, in the Theoretical Background chapter, we take 

an in-depth look at the van der Waals and Platteeuw model. In the Methodology chapter, we derive 

an expression for hydrate enthalpy of dissociation. We also demonstrate how calorimetric 

measurements can be useful to enhance parameter estimation from hydrate equilibrium conditions. 
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After addressing those issues, we enunciate the models used for each phase studied in this work 

(vapor, ice, liquid water and gas hydrate). We end the Methodology chapter by explaining the 

parameter regression procedure and enumerating experimental data used to fit the parameters. The 

quality of fit and the estimated parameters are discussed in the Results and Discussion chapter. We 

also present comments on the relations between hydrate enthalpy of dissociation, equilibrium 

conditions and occupancies. Finally, we present remarks in the Conclusion chapter. 
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2. Theoretical Background 

2.1. The Development of ‘Phenomenological Models 

After the crystallographic determination of clathrate structures that has been carried in 

the late 1940s and early 1950s, the development of phenomenological models became finally 

possible, culminating in the publication of “Clathrate Solutions” by van der Waals and Platteeuw 

in 1959. The works of von Stackelberg et al.46–50, Pauling and Marsh51 and Claussen52–54 in this 

period elucidated the two types of structure of gas hydrates, while several other works investigated 

the structures of other clathrates, such as those of hydroquinone lattice55–62. 

The idea that crystallographic work was fundamental to a rigorous hydrate model was 

already present in one of van der Waals’ earliest works63. Contrary to what it may seem, their well-

known publication of “Clathrate Solutions”9 was not the earliest appearance of a thermodynamic 

partition function for clathrate compounds. The work from 1959 is actually a product of an 

extensive body of research that had been carried out throughout the whole 1950s, with the 

combined efforts of van der Waals, Platteeuw – these two working most of the time in 

collaboration – and Barrer and Stuart in 1957. 

In 1953, van der Waals first published a canonical partition function for clathrates in the 

General Discussion section of volume 15 of Discussions of the Faraday Society63. In that short 

piece, he states that, despite the availability of X-ray studies of clathrate compounds, little had 

been done on the development of a statistical theory for them. The partition function devised by 

him in that piece was very different from the well-known form of 1959. He developed an 

expression that depends on the number of “holes” in the clathrate and on the free volumes of all 

molecules, either host or guest (the “free volume” expression is a rather vague idea in this 

publication, but in van der Waals’ later works it represents the configurational integral). However, 

he makes some statements that would ultimately lead to the formal assumptions of the 1959 model. 

According to him, it was reasonable to think that the free volume of host molecules would not 

depend on the nature of the guests. Furthermore, he establishes some fundamental requirements of 

the model-to-be: 
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(i)  “Thermodynamically the hydrate must be described as a mixed crystal of 

a metastable water modification and a compound mH2O.1A* having an incongruent melting 

point; 

(ii) In the two-phase region hydrate + gas the equilibrium vapour pressure of 

the crystals should obey a Langmuir isotherm; 

(iii) Along a three-phase line, where the hydrate is in equilibrium with two other 

phases, only one of the three variables T, P and y† is independent.” 

The follow-up of the 1953 work is the almost simultaneous publication of 

“Thermodynamic Properties of Quinol Clathrates”64, by Platteeuw and van der Waals, and “The 

Statistical Mechanics of Clathrate Compounds”65, by van der Waals. These two articles cited one 

another. In the former, a theoretical and experimental investigation of hydroquinone clathrates is 

carried out. Firstly, the authors obtain an expression for the clathrate vapor pressure. Then, they 

compare their results to the vapor pressure and the enthalpy change observed in the three-phase 

equilibrium of solid hydroquinone, vapor and hydroquinone clathrate for the binary system 

hydroquinone + argon. The enthalpy comparison is made via the Clausius-Clapeyron equation. 

The detailed description of the thermodynamic model used is given in the latter. In that work, van 

der Waals derives a partition function for hydroquinone clathrate, which possess only one type of 

cage. Here, we already see the core features of the 1959 model: we have the same basic 

assumptions and we see the use of the Lennard-Jones-Devonshire cell theory66. The major 

difference lies in the ensemble used for the derivation, which, at that point, was the canonical one. 

In 1957, Barrer and Stuart published a work entitled “Non-stoichiometric Clathrate 

Compounds of Water”8. In this work, they extend van der Waals’ 1956 reasoning to gas hydrates, 

which have two distinct cage types. Barrer and Stuart’s partition function already possesses a 

combinatorial analysis to deal with all possible cases of occupation and that is the main 

contribution they bring to the clathrate phenomenological models. 

The next two works, published in 1958, were both authored by van der Waals and 

Platteeuw. In an experimental measurement of hydroquinone + argon clathrates, Platteeuw and 

                                                             
* “A” in the original work represents the guest 
† Mole fraction of one component 
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van der Waals verified that the vapor pressure of the guest is characterized by a Langmuir-type 

isotherm67. The Langmuir-type isotherm for clathrates was predicted in the 1956 van der Waals’ 

work, published in Transactions of the Faraday Society65. In 1958, these authors also extended van 

der Waals’ 1956 model to gas hydrates with the publishing of “Thermodynamic properties of gas 

hydrates”68. In this paper, Platteeuw and van der Waals incorporated independently in their work 

some of the ideas that Barrer and Stuart had already brought up in 19578. However, Barrer and 

Stuart’s work was more general, as it accounted for several possible types of guests, while the 

Platteeuw and van der Waals’ modification of their 1956 theoretical work only included different 

types of cages. 

Then, in 1959, we have the publication of the van der Waals and Platteeuw model in the 

same form as it is currently used. In “Clathrate Solutions”9 they present a general formula, 

extendable to any number of guests or cavity types. It is also the first time that they present a semi-

grand canonical partition function, using the chemical potential of the guests as an independent 

variable. This time, their model was also capable of dealing with phase equilibrium with non-ideal 

fluid phases, as it was the first time that they described the guests by their fugacities. The analogy 

with the Langmuir-type isotherm also coined the expression “Langmuir constant”, which is still 

used today to refer to the ratio of the enclathration configurational integral and kBT. In that same 

year, we also have the publication of “Thermodynamic Properties of Gas Hydrates II” by Platteeuw 

and van der Waals69. This paper deals with the measurement of phase equilibria and the verification 

of their statistical thermodynamics framework. According to this paper, their model was capable 

of accounting for azeotropic-like behavior (congruent melting) in clathrate solutions. 

Later works by these two authors did not bring great innovations to the phenomenological 

model. In 1959, they commented on the validity of the Clausius-Clapeyron equation application 

to the three-phase equilibrium lines of clathrate-containing systems70. In 1961, van der Waals 

addressed the enclathration of large molecules, which would lead to a reduction of the number of 

possible states for the internal degrees of freedom of those molecules, in comparison to their free 

states71. In 1962, they presented an experimental technique relating the chemical potential 

difference between host-molecules in the hypothetical empty clathrate and in the real clathrate 

with measured clathrate composition72.  
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Hence, as we began this discussion, we see that the van der Waals and Platteeuw model 

is the embodiment of a series of works, of both theoretical and experimental nature, in the search 

for understanding clathrate thermodynamic properties. Figure 2 shows the major publications that 

deal with this subject in 1950s and early 1960s that are in some way related to the development of 

this model. In this figure, arrows point from one box to another to indicate that the paper at the 

base of the arrow cites the paper to which it points. 

As we can see, apart from the crystallographic contributions made by Powel, von 

Stackelberg and others51,52,54, who are heavily cited in van der Waals and Platteeuw’s works, the 

only contributors other than these authors were Barrer and Stuart. Their paper, however, is of great 

influence, as indicated by several other papers of van der Waals or Platteeuw citing it. We also see 

that “Clathrate Solutions” works as a compilation of all acquired knowledge on clathrates 

phenomenology of the 1950s, as it reunites the results of almost all papers published before it. The 

1956 “The Statistical Mechanics of Clathrate Compounds” and “Thermodynamic Properties of 

Quinol Clathrates” are also pivotal works, but all of the connections ultimately lead to “General 

Discussions”, where it all began. 
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Figure 2 – Citation web of the 1950s contributions in clathrate phenomenological models. 
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2.2. The van der Waals and Platteeuw Assumptions 

The van der Waals and Platteeuw model for clathrate compounds is based in three 

fundamental assumptions on the nature of clathrates. They are rewritten below, according to our 

interpretation of them.  

(a) The free energy of the clathrate comes from an a priori description of the host 

molecule lattice; 

(b) Guest molecules can only be located within clathrate cavities given the prior 

description of the lattice. In addition, there can be only one guest molecule per cavity 

in the lattice; 

(c) Interactions between guest molecules are neglected. 

Assumption (a) was originally written in “Clathrate Solutions”9 as:  

“The contribution of the Q molecules [host molecules] to the free energy is 

independent of the mode of occupation of the cavities.”  

An earlier and more complete appearance of the same assumption, even though specific 

to quinol clathrates, states that65:  

“The contribution of the quinol molecules to the total partition function is assumed 

to be the same for the empty β-quinol lattice as for the clathrate compound in which a 

fraction y of the holes is occupied, except for the fact that the quinol molecules determine 

the field in which the A‡ molecules move. This implies that the vibrations and internal 

degrees of freedom of the quinol molecules are independent of y. Although this can never be 

strictly true, it is expected to be a reasonable approximation since the quinol molecules form 

a rigid structure through their hydrogen bonds and interact only weakly with non-polar A 

molecules. One should, however, exclude cases such as the compound between quinol and 

CO2, in which the trapped molecules have such dimensions that they seriously distort the β-

quinol lattice.” 

                                                             
‡ “A” in the original work represents the guest 
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 The effect of this assumption is the separation of contributions of the host molecules 

from the rest of the system. By doing so, we will see that we can avoid a thorough description of 

the microscopic states of the empty lattice and postpone the problem of considering such states 

until we reach a macroscopic level. This is what has been done in the clathrate literature. The effect 

of this a priori structure in the properties of the whole system has been obtained by parameter 

estimation from equilibrium data. Hence, we interpret the original assumption as giving a certain 

priority to the host molecules in the counting of states, for we first devise an empty clathrate 

structure that can be in any possible state regardless of how a certain guest molecule will occupy 

which cage. 

The original Assumption (b) is rather straightforward and it stresses our interpretation of 

Assumption (a). It states that:  

“The encaged molecules are localized in the cavities and a cavity can never hold 

more than one solute molecule.” 

From this assumption, we see that the description of the host molecules is indeed primary, 

as the guest molecules can only exist within an a priori lattice structure. Therefore, we can say 

that the states in which the guest molecules can be are all the possible states, given the prior state 

of the host molecules. This assumption is also important as it limits the number of guest molecules 

per water molecule. As a corollary of (b), we know that there can only be as many guest molecules 

as there are cages. The impossibility of double or triple occupancy is also going to facilitate the 

computation of microstates of the system, but it will be one of the main limitations of this model, 

because experimental investigation has already shown that some guests are capable of occupying 

one cage with more than one molecule3. 

Finally, we have Assumption (c), whose effect is the independence in the mode of 

occupation of guest molecules with respect to themselves. The original one from 1959 states that: 

“The mutual interaction of the solute molecules is neglected.”  

In the same work, van der Waals and Platteeuw go further by explicitly mentioning its 

effects:  
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“The partition function for the motion of a solute molecule in its cage is independent 

of the number of types of solute molecules present.”  

This is an effect we will see when we consider the Hamiltonian of the system in Section 

2.3. 

van der Waals and Platteeuw make three additional assumptions. The first of the 

remainder assumptions is on the validity of Classical Statistics. The authors state that their 

framework is valid if Classical Statistics is valid – henceforth referred to as Assumption (d) –, i.e. 

Classical Statistical Mechanics is enough to predict relevant properties in conditions of interest, 

not requiring Quantum Statistical Mechanics calculations. This assumption is known to be valid 

for physical systems at not too low temperatures17. 

The two remaining assumptions regard the Hamiltonian of an individual guest molecule. 

The authors state that the solute molecules can rotate freely in their cavities – henceforth referred 

to as Assumption (e). According to them, a consequence of this assumption is that the rotational 

partition function of guest molecules is the same of that in the ideal gas. This assumption is not 

made in the very first beginning of their statistical thermodynamics analysis, but in a later part of 

their work. This is probably because the expression derived by them from Assumptions (a), (b), 

(c) and (d) is valid no matter the rotational partition function. We will see that this assumption is 

extremely important when conceiving the molecular partition function for the individual guest 

molecule. 

The last assumption – Assumption (f) –, which we will further explain in the next section, 

states that  

“The potential energy of a solute molecule when at a distance r from the center of 

its cage is given by the spherically symmetrical potential w(r) proposed by Lennard-Jones 

and Devonshire.”  

This assumption reduces the number of microscopic coordinates that matter to the 

problem and, being a spherically symmetric potential, the only important coordinate is the relative 

displacement of the molecule from the center of the cavity. The late introduction of this assumption 
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in van der Waals and Platteeuw’s work leads to some inconsistencies in later works that tried to 

extend their model. This is because the integration of this potential is performed from the center 

of the cavity to its limiting radius (rcav), in which the latter can be considered a function of 

macroscopic variables that are not taken into account in van der Waals and Platteeuw’s original 

work, as the authors only foresaw the use of a constant cage radius. 

2.3. Considerations on the Hamiltonian of the System 

From a microscopic point of view, the model assumptions impose several constrains to 

the Hamiltonian of the clathrate system (host molecule lattice and entrapped guest molecules). The 

first one is a common assumption in statistical thermodynamics. Firstly, we decompose the 

Hamiltonian of the system, HHHH , in two parts, being one of them accountable for the motion of the 

center of mass of the molecules, trans
HHHH , and another one accountable for the relative motion of 

molecular constituents with respect to that center of mass – the so-called internal degrees of 

freedom –, int
HHHH . We, then, have: 

 trans int= +H H HH H HH H HH H H  (2.1) 

The translational Hamiltonian for the system is a function of the following variables: 

 ( )trans trans
33

, ,××
= NN

p r NH HH HH HH H  (2.2) 

In which N represents the number of molecules present in the system. In the same 

equation, p and r represent the momentum and the position of an individual particle and all those 

values are grouped in the matrices p  and r , respectively, which have N lines and 3 columns each. 

If we postulate a separable Hamiltonian with respect to momenta and positions, we would write: 

 ( ) ( )trans
33

, ,××
= + NN

K p N U r NHHHH  (2.3) 

In this equation, K represents the kinetic energy of the particles and U represents their 

potential energy. The expression of K used here is the classical one, which depends only on the 

momentum of the particles and the number of molecules in the system. K is, then, expressed in 

Equation (2.4) in which im  is the mass of particle i. 
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 ( )
2

3
1

,
2×

=

=∑
N

i

N
i i

p
K p N

m
 (2.4) 

Deriving an expression for the potential energy is more complicated as the assumptions 

of the van der Waals and Platteeuw model have direct consequences on U. As stated earlier, an a 

priori description of the empty clathrate lattice in needed before the inclusion of guest molecules 

in the modeling. This means that the potential energy of the empty lattice is not a function of the 

positions of the guests. In addition, the guest molecules do not interact with each other, which 

means that the only microscopic coordinates on which their potential energy depends are the 

position of water molecules and the position of each individual guest molecule. Hence, the 

potential energy of the whole system can be separated into two contributions: one related to the 

empty lattice (EL) and the other one related to the enclathration of individual guest molecules 

(enc), as in the following equation. 

 ( ) ( ) ( )
guest

w

EL enc
3 3 3w w

1 3
1

, , , ,× × ×
×

=

= + ∑ w

N

N N Nj j
j

U r N U r N U r r N  (2.5) 

The potential energy of the empty lattice is not further developed in the van der Waals 

and Platteeuw model. However, further simplifications in the enclathration term need to be made 

considering the other assumptions of the model. In order to make the enclathration energy depend 

only on microscopic coordinates of the guests, all guest-host interactions are combined into a mean 

potential function. This takes away the dependency of enc
jU  with microscopic positions of water 

molecules. However, we are now working with mean host positions that can be obtained from 

macroscopic properties. Hence, from now on, enc
jU  will depend on the extensive volume of the 

clathrate (V ). It will still be a function of the total number of host molecules though, both because 

we consider the contribution of all of them in the mean guest-host potential function and because 

their mean distance to the guests depends on the clathrate molar volume with respect to host 

molecules (V ). Now, the only important microscopic coordinates are the distance between the 

guest molecule and the center of the cavity (r) and the radius of the cavity (rcav). This last variable 

is important, because the guest molecules can only be positioned inside one cavity or another, thus 

replacing the absolute dependency on space coordinate to a relative dependency coordinate with 

respect to a given cavity center. A further explanation of its role can be found in Section 2.9. 
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However, in clathrates, cavities can be of several types and this would lead to different 

potential functions. Therefore, not only the potential function varies from cavity to cavity, but also 

the total number of guest molecules in each type of cavity. We, then, introduce variables Ni,j 

representing the number of molecules j in cavities of type i. 

 ( ) ( ) ( )
guest ,cav

w cav guests , w

EL enc
3 3cav w , , , , cav, w

1 1 1

, , , , , , , ,× × × ×
= = =

= +∑∑∑
i j

i j

n Nn

N n n N N i j k i j k i
i j k

U r r r N V U r N U r r V N  (2.6) 

Finally, the complete translational Hamiltonian of the clathrate system following the van 

der Waals and Platteeuw assumptions is obtained: 

 ( ) ( )
guest guest ,w cav

w

2 2
trans EL enc

3 w , , cav, w1 3
1 1 1 1 1

, , , ,
2 2

× ×
= = = = =

= + + +∑ ∑ ∑∑∑
i jN n NN n

i i
N i j k k i

i i i j ki i

p p
U r N U r r V N

m m
HHHH  (2.7) 

Then, we can identify the Hamiltonian of two subsystems: 

 ( )
w

w

2
trans-EL EL

3 w
1

,
2

×
=

= +∑
N

i
N

i i

p
U r N

m
HHHH  (2.8) 

 ( )
guest guest ,cav2

trans-enc enc
, , cav, w1 3

1 1 1 1

, , ,
2 ×

= = = =

= +∑ ∑∑∑
i jN n Nn

i
i j k k i

i i j ki

p
U r r V N

m
HHHH  (2.9) 

If we define a new Hamiltonian for each type guest molecule in each type of cavity, we 

have: 

 ( )
2

trans-enc enc
, , , , cav, w1 3

, , ,
2 ×

= +i
i j k i j k k i

i

p
U r r V N

m
HHHH  (2.10) 

 
guest ,cavities

trans trans-EL trans-enc trans-EL trans-enc
, ,

1 1 1= = =

= + = + ∑ ∑∑
i jn Nn

i j k
i j k

H H H H HH H H H HH H H H HH H H H H  (2.11) 

As we separated the molecules of our system into two groups, namely those pertaining to 

the empty lattice structure, and those pertaining to the guest molecule group, we can also separate 

the Hamiltonian for their molecular internal motions, if we postulate that the internal motion of a 

given molecule does not influence the internal motion of another one (independent degrees of 

freedom). Hence, we have the complete Hamiltonian of the system: 
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 trans int EL enc= + = +H H H H HH H H H HH H H H HH H H H H  (2.12) 

 ( )
guest ,cavities

trans-EL int-EL trans-enc int-enc
, , ,

1 1 1= = =

= + + +∑ ∑∑
i jn Nn

i j k j k
i j k

H H H H HH H H H HH H H H HH H H H H  (2.13) 

From this derivation, we can see that it is very convenient to formulate the problem of 

describing clathrate thermodynamic properties as two subproblems: the empty lattice and the 

enclathration of a guest molecule. We will also see that the van der Waals and Platteeuw model 

works by obtaining the thermodynamic properties of real clathrates from two distinct references: 

the ideal gas (internal degrees of freedom of the guest molecules) and a hypothetical empty 

clathrate structure composed of only host molecules (water in the case of hydrates). 

2.4. The Microcanonical Partition Function 

To obtain the microcanonical partition function, we need to count the number of possible 

microscopic states in which the system can be with a given set of number of molecules (N), internal 

energy (E) and volume (V). Every combination of positions and momenta of particles corresponds 

to a microstate of the system and each microstate has its corresponding Hamiltonian. Hence, 

possible states are those in which the Hamiltonian equals the established internal energy of the 

system. This reasoning is put in a mathematical form by the following expression: 

 ( ) ( )
1

, , ,δ
∞

=

Ω = −  ∑ k
k

N V E N V EHHHH  (2.14) 

In this equation, δ  represents a function that is either zero or one, being the latter when 

the bracketed expression is zero. The expression means that for all possible Hamiltonians, the only 

ones that are going to be counted are those that are equal to the internal energy specified for the 

system. Given the Hamiltonian expression in Equation (2.12), we can write: 

 ( ) ( )EL enc

1 1

, , δ
∞ ∞

= =

Ω = + −∑∑ k l
k l

N V E EH HH HH HH H  (2.15) 

Hence, despite our capacity of describing the system with independent Hamiltonian 

contributions, we have only one fixed internal energy for the system. Therefore, if one tries to 

devise a partition function for the whole system based on the number of empty lattice microstates 
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and the number of microstates of the guests, an expression of the following kind would have to be 

written: 

 ( ) ( ) ( ) ( )EL EL enc enc EL enc
w guest w

1 1

, , , , , , , δ
∞ ∞

= =

Ω = Ω Ω + −∑∑ k l k l
k l

N V E E N V E N N V E E E  (2.16) 

In Expression (2.16), we see that the number of states in which the clathrate can be is a 

combination of independent configurations of the empty lattice ( ELΩ ) and the guests ( encΩ ). 

However, those combinations must meet the condition that the internal energy of the clathrate 

equals the sum of the internal energy of the empty lattice ( EL
kE ) and the internal energy of 

enclathration ( enc
lE ). Therefore, despite having two distinct contributions, the system is still 

described by variables , ,N V E . 

Here, we do not develop the expression for the number of states of the empty lattice EL( )Ω

, as we did not develop an expression for ELU . On the other hand, we can calculate the microscopic 

aspects of the guests in the clathrate phase. 

Given that the empty lattice follows an a priori crystallographic structure containing 

distinct cavities and that Assumption (b) is valid, a less usual combinatorial analysis is needed to 

obtain an expression for encΩ . First, for actually counting the number of states, we will have to use 

variables Ni,j that represent the number of guest molecules of type j present in cavities of type i. 

The partition function we derived in Expression (2.16) is not a function of such variables. Hence, 

we need to add them to the problem consistently with the original , ,N V E  set of variables. To do 

so, the sum of Ni,j in all cavities has to be equal to the original variable Nj and this impose a 

restriction to the partition function 
cav

,
1

δ
=

 
− 

 
∑
n

i j j
i

N N . We, then, split the internal energy of the 

system into ELE  and encE , as: 

 

( )

( )cav guest

guest cav

1,1 1,2 1, ,guest cav guest

enc enc
guest w

enc enc
w

0 0 0 0
,

11

, , ,

, , ,

δ

×
∞ ∞ ∞ ∞

= = = =

==

Ω =

  Ω ×
  
  =     −        

∑ ∑ ∑ ∑
∑∏

L L

n n n

l

l n n

n n

N N N N
i j j

ij

E N N V

E N N V

N N

 (2.17) 
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The chained summations of Equation (2.17) are represented in the following compact 

notation. 

 ( ) ( )
guest cav

cav guest

enc enc enc enc
guest w w ,

11

, , , , , , δ
∞

×
==

   
Ω = Ω −   

    
∑ ∑∏

n n

l l n n i j j
N ij

E N N V E N N V N N  (2.18) 

Now we come up with an expression for the cavity-dependent term of enclathration of 

guest molecules ( encΩ ), given its variables 
cav guest

enc, ,×j n nE N V . Here, we use some of the van der 

Waals and Platteeuw’s assumptions. Given that guests can only exist within cavities and that there 

can only be one guest per cavity, we see that the addition of a guest molecule diminishes the 

number of possibilities of addition for the next one. Furthermore, cavities have a known structure 

and each of them can be identified as pertaining to a specified type. Guest-guest interactions are 

neglected and the Hamiltonian of a single guest molecule depends only on the distance between 

the guest and the center of the cavity (r); the mean radius of the cavity it is in (rcav); and 

macroscopic variables common to all guests (V, Nw). Then, there exists a variable guest
,Ω i j  that 

represents the number of states in which a guest of type j can be in a cavity of type i. Therefore, 

we have that: 

 ( ) ( )
,cav

cav guest

enc enc guest guest
w , , , w

1 1

, , , , ,×
= =

Ω = Ω∏∏
i jNn

l n n i j i j l
i j

E N N V W E N V  (2.19) 

In the Expression (2.19), W accounts for the number of ways in which guests can be 

placed in clathrate cavities and guest
,Ω i j , as stated before, represents the number of states of such 

guests within the cavities.  
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Figure 3 – Schematic representation of clathrate compounds. (a) Clathrate of one type of guest molecules and 

one type of cavity; (b) Clathrate of one type of guest molecules and two types of cavities; and (c) Clathrate of 

two types of guest molecules and two types of cavities. 

 

The W term of the right-hand side is developed as follows. If the lattice had only one type 

of cavity and only one type of guest would be present, like the scheme in Figure 3-a, the number 

of states in which guests could be would be the simple combination of number of cavities and the 

number of molecules of the guest. 

 ( )
cav cav

guests guests cav guests

!

!

 
= = 

− 

N N
W

N N N N
 (2.20) 

However, if we want to move towards a more general expression, we need to add another 

type of cavity in the empty lattice. Figure 3-b shows a scheme of guests of the same type entrapped 

in a lattice of two kinds of cavities. In this case, two distinct combinations exist: one related to 

large cavities and another one related to the small cavities. This leads to: 

 

( ) ( )

cav1 cav2

guests, cav1 guests, cav2

cav1 cav2

guests, cav1 cav1 guests, cav1 guests, cav2 cav2 guests, cav2

! !

! !

  
= =  
  

=
− −

N N
W

N N

N N

N N N N N N

 (2.21) 

It should be noted that in this expression, the total number of guest molecules has been 

split in the number of molecules that occupy cavities of type 1 and the number of molecules that 

occupy cavity 2. The generalization of this expression to a number ncav of cavities furnishes the 

following expression: 
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 (2.22) 

However, in nature, there exist clathrates of different types of guest molecules. Hence, 

one final reasoning is needed in order to find the most general expression of this kind, given the 

model assumptions. Figure 3-c shows a scheme for hydrates of two different cavities and two 

different kinds of guests. In this scenario, one needs to have in mind that the presence of guest 1 

in cavity type 1 diminishes the number of available cavities of type 1 to all guests, 1 and 2. Hence, 

Expression (2.21) becomes: 

 
( ) ( )

( ) ( )

cav1 cav1
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! !

! !
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! !

= ×
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×
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N N
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N N N N N N

N N

N N N N N N

 (2.23) 

In this expression, guests, cavN  represents the sum of all guest molecules in each cavity type. 

The generalization of this expression to ncav and nguests yields: 
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1 1
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i, j i i, j
j

N
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N N N

 
(2.24) 

Here, the subscript “guests” has been omitted and we reintroduce variables Ni,j. This 

expression is finally rearranged into Expression (2.25). 

 
( )

cav

guestsguests

cav,

1

cav,
1 1

!

! !
=

= =

=
  

−      

∏
∑ ∏

n
i

nn
i

i i, j i, j
j j

N
W N

N N N

 
(2.25) 

However, the number of cavities is not a convenient variable here. Therefore, we must 

introduce new variables to relate it to the number of host molecules. Given that the empty lattice 

possesses a fixed crystalline structure, we know how many host molecules are present and how 

many cavities they can form, so we introduce the following variable: 

 
cav,

w

ν = i
i

N

N
 (2.26) 
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Hence, Expression (2.25) becomes: 
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(2.27) 

We also introduce the variable Wi that will be important later: 

 

( )
guestsguests

w

w
1 1

!

! !

ν

ν
= =

=
  

−      
∑ ∏

i
i nn

i i, j i, j
j j

N
W

N N N

 
(2.28) 

Finally, we consider the number of possible internal configurations of guests of different 

types in the two types of cavities ( ,Ωi j ) at a given internal energy E: 

 ( ) ( ) guestcav

cav guest guestsguests

wenc enc guest
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 (2.29) 

We can now combine it to the expression derived for the empty lattice and we arrive at 

the number of states for the whole clathrate as a function of the number of guests j. 
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 (2.30) 

Alternatively, by expanding encΩ  with Equation (2.28): 
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 (2.31) 

2.5. The Canonical Partition Function 

The microcanonical ensemble is not the most convenient to treat clathrate systems. 

Therefore, we use the canonical partition function, with the following transformation73: 

 ( ) ( ), , , , ββ
∞

−= Ω∑ qE

q
q

Q N V E N V e  (2.32) 

In which β  represents 1/kBT and E represents the energy of a state q, one of the 

independent variables of the microcanonical ensemble. Hence, we obtain the following by using 

the clathrate microcanonical partition function in a condensed form – Expression (2.16) – into 

Expression (2.33): 
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Since there are only two terms that depend on qE  in Expression (2.33), we can pull 

independent terms out of the inner summations: 
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The sum in index q will only effectively count the terms for which EL enc+ =k l qE E E , as a 

result from the δ  function. Hence, it is equivalent to removing the summation and implementing 

the substitution: 

 
( ) ( ) ( ) ( )EL EL enc enc EL enc

w guest w
1 1

, , , , , , , expβ β
∞ ∞

= =
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(2.35) 

Then, because ELΩ  and encΩ  are independent, the canonical partition can be split into 

two partition functions: the canonical partition function of the empty lattice and the canonical 

partition function of the guests. 
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Finally, we arrive at: 

 ( ) ( ) ( )EL enc
w guests w, , , , , , ,β β β= ×Q N V Q N V Q N N V  (2.37) 

The same reasoning is valid for each individual guest molecule, given the independence 

of their contributions from the Hamiltonians and, thus, of their internal energy contributions. Here, 

we introduce a partition function for a system of a guest molecule of type j subject to the field 

generated by a cage of type i, which will be henceforth represented by hi,j as in Expression (2.38). 

By doing so, we can then write the complete canonical partition function for the clathrate – 

Expression (2.39) –, relating that partition function to the Hamiltonian contribution of the 

enclathration of the molecule.  

 ( ) ( )enc
, w , , , ,

1

, , expβ β
∞
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= Ω −∑i j i j q i j q
q

h V N HHHH  (2.38) 
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The canonical partition function as a function of the expanded variable set ( expdQ ) would, 

then, be: 
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With the knowledge that ,i jh  is the same for every molecule of type j in any cage of type 

i we can rewrite the product of these functions as a product in number of guest types (nguests), 

instead of number of guest molecules (Nguests).  
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, w , w
1 1

, , , ,β β
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i j i j
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This expression is equivalent to the canonical partition function presented by van der 

Waals and Platteeuw’s original work; with the relation between the Helmholtz energy and the 

canonical partition function: 
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 (2.42) 
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The partition function, expressed in Equation (2.43), is analogous the one obtained by 

Barrer and Stuart in 1957. The authors proceeded to the derivation of macroscopic thermodynamic 

properties by differentiation of the Helmholtz energy expression obtained from it with respect to 

the independent variables of the function. 

2.6. The Semi-Grand Canonical Partition Function 

The independent variables chosen by van der Waals and Platteeuw to describe clathrates 

were temperature (T), volume (V), number of molecules in the lattice (Nw) and the absolute 

activities of the guest species (λj)73. Respecting the restrictions of thermodynamics (e.g.: 

conjugated variables such as pressure and volume cannot be both specified at the same time and 

so on), this set of variables is the most convenient one. One of the reasons for this is the easy 

obtention of an average Nj from the differentiation of the semi-grand canonical partition function 

with respect to λj. Obtaining the value of λj from the canonical partition function would require the 

differentiation of that function with respect to Nj, which is actually an integer value. Hence, a 

transformation would be required in order to obtain the real average value of Nj, instead of the 

integer Nj. Apart from that, we also have some other conveniences that are pointed out here. 

Temperature is one of the intensive variables involved in phase equilibrium criteria. As the volume 

is an independent variable in the defined partition function and guests are encaged in the predefined 

clathrate structure, the volume of the empty lattice reference is the same as that of the real clathrate. 

The empty lattice and the clathrate have a known and well-characterized crystalline structure with 

fixed number of molecules. Finally, clathrates are non-stoichiometric compounds, because the 

number of guest molecules that can stabilize the clathrate structure varies with other 

thermodynamic properties. However, at equilibrium conditions, the chemical potential of guest 

species will be the same in the fluid phases and in the clathrate structure. 
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The only difference between the convenient variables and the ones in the partition 

function derived before – Equation (2.39) – is related to the guests. In the canonical partition 

function, their influence is being considered by the number of molecules entrapped. Here, we 

would like to express their contribution in terms of absolute activity as van der Waals and 

Platteeuw defined: 
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exp exp
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λ βµ
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j
j jk T

 (2.44) 

In this expression, µj is the absolute chemical potential of guest species j. The semi-grand 

canonical partition function can be obtained from the canonical partition function by the following 

expressions for a single component73: 
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For a multicomponent system of Nguest,j molecules of type j and a total number of guests 

nguest, like the one we have here, we have the following generalization. 
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For the clathrate system, however, we are only willing to transform variables related to 

the guests. Hence, if we substitute the expression for ( ), ,βQ V N  from Expression (2.39) into 

Expression (2.46), we arrive at: 
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In Expression (2.47) we see that the delta function and the sum in N  can vanish if we 

substitute jN  terms for 
cav

,
1=

∑
n

i j
i

N , in a similarly to what we did in the microcanonical partition 

function derivation. Hence, we obtain Expression (2.48). 
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Rearranging Expression (2.48) for more clarity in the dependencies of sums and products, 

we write Expression (2.49). 

 ( )
cav

guest cav,
,1EL

w guest ,
1 1

, , ,β λ λ =

∞

= =

∑
Ξ = ∑∏ ∏

n

k j
i jk

n nN
N

j i i j
N j i

V N Q W h  (2.49) 

Finally, the term 

cav
guest ,

1

1

λ =

=

∑
∏

n

k j
k

n N

j
j

 can be expressed as a product in cavities and guests, as 

Expression (2.50) shows. 
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Expression (2.49), then, becomes Expression (2.51). 
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We must take into account that guest molecules are trapped in cavities of different types 

and that there is only one molecule per cavity at maximum – Assumption (b). Hence, the 

summations in Equation (2.51) must not reach infinity, but the maximum number of guest 

molecules in cavity type i (Mi), for the sum of all molecules in each type of cavity cannot be greater 

than the cavities number itself. 
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If we substitute the expression for iW , we can obtain the expression for Ξ  directly from 

its independent variables. 
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If we want to respect the constraint imposed in Equation (2.53) we know that the 

following relation must hold. 
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Thus, summations in Equation (2.53) can be rewritten. We know that summations of the 

number of guest molecules of type j within cages of type i from zero to infinity are equivalent to 

the summations from zero to Mi if both are subject to the constrain in Equation (2.53), as number 

of molecules larger than Mi are excluded from the sum. Then, we have 

 

( )

[ ]

guestscavncav1 2
, ,

guestsguests
1,1 2,1 guestcav

guest

wEL
,

0 0 , 1 1

w
1 1

, cav
1

!

! !

    1, ,

ν
λ

ν
= = = =

= =

=

  
  
  Ξ =     −       

 ≤ ∈


∑ ∑ ∑ ∏ ∏
∑ ∏

∑

L

L

i j i j

n

nnMM M
N Ni

i j jnn
N N N n i j

i i, j i, j
j j

n

i j i
j

N
Q h

N N N

N M i n

 (2.55) 

The expression above can be further simplified with the aid of the multinomial theorem. 

According to McQuarrie73, the multinomial theorem states the following: 
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Under the following complementary restriction: 

 1 2+ + + =L mk k k n  (2.57) 
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If one looks at the semi-grand canonical partition function – Equation (2.55) –, one can 

see several similarities with the multinomial theorem – Equation (2.56). Firstly, we see that the 

necessary condition for the validity of the theorem is observed in the combinatorial term from the 

partition function. wν i N  represents the number of cavities of type i in the clathrate structure and 

its equivalent in the general multinomial theorem expression is n. The term 
guests

w
1

ν
=

 
−  

 
∑

n

i i, j
j

N N  

corresponds to k1 in Equation (2.57) and it represents the cages of type i that have not been 

occupied and Ni,j represents the cavities of type i occupied by guest j. The product of factorial 

terms goes up to the total number of guests and this means that, for each cavity of type i, we have: 
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This is the equivalent to the following relation, from Equation (2.57): 
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m
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x . However, it should be 

noted that the first term in the combination is related to the empty cavities. 
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For the multinomial theorem to be valid, this term needs to be associated with a 

contribution in the product. 
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The contribution of this term in the product is made evident by using a power of 1, not 

fundamentally changing the product in Equation (2.62). Then, we still have a valid application of 

the multinomial theorem:  
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From this, we can rewrite Expression (2.55) as a sum of products between activities and 

partition functions: 
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Then, we have finally arrived at the van der Waals and Platteeuw semi-grand canonical 

partition function: 
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2.7. Macroscopic Properties from a Semi-grand Canonical Potential 

The partition function expressed earlier in Equation (2.64) can now be used to describe 

macroscopic thermodynamic variables of the clathrate. The microcanonical partition function is 

closely related to the entropy of the system. However, other partition functions originate other 

thermodynamic potentials. The partition functions of common ensembles, like the canonical or the 

isothermal-isobaric ensembles, originate well-known thermodynamic potentials (Helmholtz 

energy and Gibbs energy, respectively). Other less common ensembles, like the grand canonical 

(T,V,µ), originates less common potentials, like the Landau Potential (-PV). In the case of the semi-

grand canonical partition function, the thermodynamic potential obtained would have a hybrid 

nature, being close to the Helmholtz energy for the empty lattice and close to the Landau potential 

for the guests. Hence, we define our potential (Ψ): 

 ( ) ( )w guests B w guests, , , ln , , ,µ µΨ = − ΞT V N k T T V N  (2.65) 

Each of the ensemble transformations we performed earlier to arrive at Expression (2.64) 

correspond to a Legendre transform of thermodynamic potentials with respect to macroscopic 

variables. Firstly, we postulated a microcanonical partition function, which means that we could 

obtain entropy as a function of (E,V,N). The relation between these variables comes from the 

fundamental thermodynamic relation. In this relation, the independent variables are, commonly, 
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(S,V,N) and we will follow this paradigm for cohesion with classical thermodynamics literature. 

Hence, we have the total differential of E with respect to the other independent variables: 
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If we rewrite the total differential of E we have that: 
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Because of Euler’s theorem, we know that the integral expression for these variables can 

be written as in Equation (2.68): 
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The change from the microcanonical to canonical partition function implies the 

permutation of entropy and temperature as independent variables. The Legendre transform of E 

that considers this change is the Helmholtz energy. Its integral form is obtained as follows: 
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 = −A E TS  (2.70) 

For the differential form, we have: 

 = − −dA dE TdS SdT  (2.71) 
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Now, if we want to obtain the integral expression of Ψ we have to substitute the number 

of guest molecules by the chemical potential of guest molecules as independent variables. This 

leads to the following Legendre transform: 
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For the differential form, we have: 
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However, the clathrate partition function is based on absolute activities rather than 

chemical potentials. As we know the definition of absolute activities in terms of chemical potential 

– Equation (2.44) – we can rewrite Equation (2.75) using more convenient variables. 
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In its integral form, we have: 
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Because we know the relation of Ψ  with the partition function Ξ, we can derive 

expressions for the entropy and the pressure of the whole clathrate, the chemical potential of host 

molecules and the number of molecules of guests simply by comparing the expression below to 

Expression (2.78): 
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Then, we have that: 
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One can derive the remaining thermodynamic properties by the mathematical 

development below. Expression (2.85) represents the chain rule applied to the ratio B/Ψ k T . 
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As we know the integral expression for Ψ  and its differential form, we can write: 
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Finally, we have: 
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The expression above means that we can obtain the internal energy of clathrates by 

derivation of the ratio B/Ψ k T , with respect to temperature. 
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Clathrate enthalpy would then be: 
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Table 1 summarizes the expression for the thermodynamic properties derived here from 

clathrates semi-grand canonical partition function. 

Table 1 – Thermodynamic properties from a semi-grand canonical-based potential. 

Thermodynamic 

Property 

Expression 
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2.8. Macroscopic Properties as Separate Contributions from the Empty Lattice and the 

Enclathration of Guest Molecules 

Ever since the beginning of these derivations, we stated that the empty lattice and the 

guest molecules grant independent contributions to the partition function by the assumptions of 

the model. That is evident when we think about the separable Hamiltonian of the system and the 

partition function of the clathrate, which is a multiplication of several partition functions. Hence, 

the same degree of separation will be perceived in a macroscopic level, by the thermodynamic 



38  

38 

 

properties derived in the last section. To prove this in a convenient manner, we first show the 

expression for the logarithm of Ξ . 
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We rewrite this expression using the relation of the canonical partition function to 

Helmholtz energy for the empty lattice contribution: 
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Now we will proceed to derive expressions for thermodynamic properties mentioned in 

the last section directly from the clathrate partition function. However, we will change the order 

in which they appear, as the reader will notice. 

Number of Guest Molecules and Cavity Occupancy 

We begin by finding an expression for the number of guest molecules of species j. It can 

be obtained from the differentiation of the partition function with respect to absolute activities, as 

Equation (2.92) shows. 
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(2.92) 

The number of guest molecules is not a convenient property in the study of clathrates. 

Instead, cavity occupancies are the common way to take into account the number of guests in the 

clathrate structure. They are defined as follows: 
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 (2.93) 

They represent the relative amount of a guest of type j in cavities of type i and those 

variables are bracketed between zero and one, according to the van der Waals and Platteeuw 

assumptions. Given that the number of molecules j can be obtained by the sum of j molecules in 

all types of cavity, we recall that: 
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From Equation (2.92) and Equation (2.94), it can be shown that: 
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(2.95) 

Substituting the expression for ,i jN  into Equation (2.93), cavity occupations can be 

computed from the enclathration partition functions and the activities of guest molecules. 
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In several of the derivations in this section, we deal with expressions like the one below: 
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In which ξ  represents any thermodynamic variable. To express Equation (2.97) in terms 

of cavity occupation, we use the following algebraic manipulation: 
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Entropy 

For the entropy, the differentiation of the partition function with respect to temperature 

plus the sum of logarithm of activities leads to: 
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Using Equation (2.98), we arrive at: 
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Pressure 

For the pressure, the substitution of Equation (2.82) leads to: 
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In addition, the Equation (2.98) simplifies Equation (2.101) to: 
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Chemical Potential of Host Molecules 

For the chemical potential of the host molecules, we have: 
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In addition, Equation (2.98) simplifies Equation (2.103) into Equation (2.104). 



41  

41 

 

 
guests guestscavEL

,
w B , w ,

1 1 1w w, , , ,

ln
ln 1

λ λ

µ ν λ θ
= = =

   ∂   ∂
= − + +      ∂ ∂      

∑ ∑ ∑
n nn

i j
i i j j i j

i i iT V T V

hA
k T h N

N N
 (2.104) 

The derivative of the Helmholtz free energy for the empty lattice is the chemical potential 

of water in the empty hydrate. Therefore, we arrive at an analogous expression of the famed van 

der Waals and Platteeuw chemical potential difference between water in the empty lattice and in 

the clathrate with the added contribution of ( ), w,i jh V N . 
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Internal Energy 

For the internal energy, we have the following. 
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From classical thermodynamics, we know that we can obtain the internal energy from a 

derivative of the Helmholtz energy with respect to temperature. Hence: 
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Using Equation (2.98), we arrive at Expression (2.108). 
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Enthalpy 

The hydrate enthalpy is, then, obtained by substituting the expression for pressure and 

internal energy, resulting in Equation (2.110). 
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All clathrate properties split into their empty lattice and enclathration contributions are 

summarized in Table 2. 
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Table 2 – Properties of clathrates from the empty lattice and enclathration contributions. 

Property 

Empty 
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2.9. Comments on the Enclathration Partition Function 

From Table 2 we see the importance of the enclathration partition function on the 

determination of clathrate properties. Here, we address some of its features. Firstly, if we go back 

to the discussion on the Hamiltonian of the system, we see that ,i jh  comes from the Hamiltonian 

of enclathration of guest molecules and the number of microstates in which the guest molecules 

can be within the cavity. We rewrite its definition below: 
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However, knowing that we can separate the Hamiltonian and the number of states once 

again in its internal molecular contributions and the translation of molecules, we have: 

 enc int trans
, , , , ,= +i j q j q i j qH H HH H HH H HH H H  (2.112) 

The translational Hamiltonian is, again, separable into kinetic and potential energy. 

Therefore, we have: 

 ( )
2
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, , , , , cav, w, , ,

2
= + +q

i j q j q i j q q i

j

p
U r r N V

m
H HH HH HH H  (2.113) 

The first two terms in the right-hand side are equivalent to the Hamiltonian of an ideal 

gas molecule: 

 ( )enc IG enc
, , , , , cav, w, , ,= +i j q j q i j q q iU r r N VH HH HH HH H  (2.114) 

To obtain an expression for the partition function, it is convenient to use the statistical 

mechanics on the continuous scale for the classical degrees of freedom, thus integrating throughout 

all possible values of momentum and position and all intramolecular degrees of freedom (q). 

 ( ) ( ) ( ), , , , expβ β
+∞

−∞

= Ω −∫Q N V N V E E dE  (2.115) 

The substitution of a general expression for the microcanonical partition function of an 

N-body system would lead to the following expression73: 

 ( ) ( ) ( )1
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+∞ +∞ +∞ +∞
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= − −∫ ∫ ∫ ∫sN
Planck

Q N V E E drdpdqdE
N h

HHHH  (2.116) 

In this expression s is the number of degrees of freedom per particle. This expression 

would be equivalent to Equation (2.40), which is the partition function for the (Nw + Nguest)-body 

clathrate system. We already know from Section 2.4 that the combinatorial term (W) deals with 

two characteristics of the clathrate system: it considers the indistinguishability of the guest 

particles and it accounts for Assumption (b). Therefore, it splits the (Nw + Nguest)-body partition 
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function in space and we only need to deal with the configurational integral of one guest molecule 

within a cavity ( ,i jh ). Thus, the integration for the r  coordinates is confined within the volume of 

a cavity and we have: 

 ( ) ( ) ( )
cav,

IG enc enc enc
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, , expδ β
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The integral in internal energy of the delta function works in the same way as the 

summations to arrive at a canonical partition function from a microcanonical one. Hence, we have: 
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The integration on all intramolecular degrees of freedom and the momentum coordinates 

yields the one molecule ideal gas partition function of a molecule of type j divided by the volume 

(Φ j ). 
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In which: 
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Finally, we need to address the so-called configurational integral, the integral term in 

Equation (2.120). If we consider the potential function, we see that it depends only on the relative 

position of the particle, having the cavity center as reference. All those observations simplify 

Equation (2.119) to: 

 ( ) ( ) ( )
cav,

2
, cav

0

, exp 4β β π = Φ − ∫
ir

i j j jh V T w r r dr  (2.121) 

2.10. Introduction of the Langmuir Constants 

In order to have a coupling between several models, such as fluid phase equations of state, 

and the van der Waals and Platteeuw model, it is very convenient to describe guest molecules by 
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their fugacity, instead of their absolute activity. Here, we show a mathematical derivation to the 

so-called Langmuir constants and we show their relation to the guest-cavity interaction potential. 

First, the absolute activity is defined. 

 ( )
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µ
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j
j

T P
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We can introduce the chemical potential of component j in a mixture of ideal gases IG( )µ j  

and the chemical potential of component j as a pure ideal gas (PIG) into Equation (2.122). 
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The guest molecules within the clathrate can be described from an ideal gas reference. 

We see that the first exponential term would be the product of the fugacity coefficient ( Hφ̂ j ) and 

the second exponential term would be the mole fraction of component j in the clathrate phase H( ).jx  
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 (2.124) 

The chemical potential of the ideal gas can be written using its canonical partition 

function. According to McQuarrie73, we have that: 

 ( ) ( )PIG
B B B, ln lnµ  = − Φ j jT P k T P k T k T T  (2.125) 

Substitution of this expression in Equation (2.124) yields: 

 ( ) ( ) ( ){ }H H
B

ˆ, , exp ln lnλ φ  = − Φ j j j jT P T P x P k T T  (2.126) 

Then, we end up with the following expression: 
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The numerator on the right-hand side would be the fugacity of species j in the clathrate 

phase. 
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If we substitute this expression for the absolute activity of component j in the definition 

of the cavity occupancies – Equation (2.96) – we would get: 
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Equation (2.129) is similar to the Langmuir adsorption isotherm, expressed below: 
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(2.130) 

In which θ j  is the occupation of adsorption sites, Pj is the partial pressure of component 

j in the fluid phase and Cj is the so-called Langmuir constant. By inspection of Equations (2.129) 

and (2.130), we can define an analogous Langmuir constant that has the following expression: 
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 (2.131) 

Substituting the expression for hi,j (Equation 2.122), we have: 
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Moreover, we get the following expression for cavity occupancy: 
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If we want to tackle thermodynamic equilibrium problems and determine the conditions 

at which clathrates can form, we need to solve a system of equilibrium equations involving several 

phases. If the system is at equilibrium, the fugacity of guest molecules is equal in the hydrate phase 

and in other fluid phases where it might be present. Hence, it is common to substitute the fugacity 

of component j in the hydrate phase by the fugacity of this very component in a fluid phase and 

the equality of fugacities for these components disappears from the equilibrium equations. The 

fugacity of the gas phase can be easily obtained from a regular equation of state and if we also 

know an expression for the Langmuir constant, we can determine clathrate cage occupancies in a 

fixed temperature, pressure, and fluid phase composition. From Expression (2.128) we also know 

that: 
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 (2.134) 

Therefore, we have the equality of the fugacity-Langmuir constant and the activity-

partition function products, as below. 

 H
, ,

ˆλ =i j j j i jh f C  (2.135) 

Mathematical manipulation shows that: 
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Using Expression (2.135) and Expression (2.136), we can express the thermodynamic 

properties in a more convenient way, as we will see in following chapter. 
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3. Methodology 

3.1. Deriving the Enthalpy of Dissociation from van der Waals and Platteeuw model 

In the last chapter, the van der Waals and Platteeuw model was thoroughly explained. 

Here, we will use it in order to obtain an expression that can deal with the energetic aspects of gas 

hydrate formation. As mentioned in the Introduction chapter, 0the modeling of such aspects is of 

great importance and the van der Waals and Platteeuw model potentialities for these applications 

have been overlooked by hydrate literature.  

In the last Chapter, we derived general expression for gas hydrate properties. Here, we 

will assume a partition function ,i jh  that is independent of the number of host molecules and the 

volume of the clathrate. That is the current approach in hydrate literature. The potential function 

will be further discussed in the next section. The following manipulations and results are reported 

in Medeiros et al, 201874. 

From Equation (2.108) for hydrate internal energy, we have that: 

 
guest cageH EL

,
,2

1 1w B

ln
ν θ

= =

∂ −
=  ∂ 
∑∑
n n

i j
i i j

j i V

hE E

N k T T
 (3.1) 

If we use Langmuir constants introduced in the last section, we obtain the following: 
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Since Фj represents the partition function of an ideal gas without the volume term – 

Equation (2.120) – and we also know that ,i jh  has the same term – Equation (2.121) – we have 

that: 

 , B IG
, = i j

i j j

C k T
h Q

V
 (3.3) 

Applying the derivative of the logarithm to the aforementioned hij expression, one 

obtains: 



50  

50 

 

 
w

IG
, , B

2
B,

ln
ln

∂     ∂
= +     ∂ ∂    

i j j i j

jV N V

h E C k T

T N k T T V
 (3.4) 

Meaning that Equation (3.1) can be rewritten and a new internal energy term appears: 
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(3.5) 

This means that the term on the right-hand side of Equation (3.5) is the difference between 

hydrate internal energy and its two references: the hypothetical empty lattice, as a reference for 

water, and the ideal gas, as a reference for the guest molecules. The difference in internal energy 

can once again be rewritten as a difference in enthalpy if an extra term is added to the right-hand 

side, having in mind that hydrate and empty lattice have the same volume and pressure and that 

,i jh  is not a function of hydrate volume or number of water molecules. 
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(3.6) 

The enthalpy of dissociation measured in calorimetric experiments accounts for the 

transition from hydrate phase to water and gas phase. If we neglect gas solubility in the liquid 

phase, we can express the heat of dissociation as in Equation (3.7), in which H
ix  represents the 

mole fraction of component i in the hydrate phase, PW
wH  represents the molar enthalpy of pure 

water and G
jH  stands for the partial molar enthalpy of component j in the gas phase. 

 
guest

H PW H G H
diss w w

1=

∆ = + −∑
n

j j
j

H x H x H H  (3.7) 

Hence, in order to make it compatible with the expression derived from Statistical 

Thermodynamics – Equation (3.6) – we need to add and subtract the molar enthalpy of the empty 

lattice. Ultimately, the expression becomes: 
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(3.8) 

This expression is analogous to the ones obtained by Avlonitis75 and Jäger et al.76, being 

the only difference the fact that the former derived it from a derivative of fugacities and the later 

derived it from expressions for hydrate entropy and Gibbs energy. 

3.2. Thermodynamic Modeling 

3.2.1. Equilibrium Criteria 

Equilibrium criteria used in this work for phase equilibrium calculations was the equality 

of chemical potentials as follows. 

 H-EL EL-PW
w w 0µ µ∆ + ∆ =  (3.9) 

In Equation (3.9), EL-PW
wµ∆  stands for the chemical potential difference between pure 

water and the water in the empty lattice phase and H-EL
wµ∆  represents the chemical potential 

difference between water in the empty lattice and water in the hydrate phase. We used this criteria 

directly to formulate the objective function for our parameter estimation methodology, i.e. without 

the use of an iterative phase equilibrium algorithm as it was done by Parrish and Prasunitz77. The 

objective function will be further explained in Section 2.3 and details on the calculation of each 

potential difference will be addressed in the remainder of this section. One should have in mind 

that two important assumptions were made: (i) solubility of methane and carbon dioxide in the 

water-rich liquid phase was neglected; (ii) hydrate volume is independent of the guest and its 

dependency on pressure and temperature is considered the same for methane, carbon dioxide and 

methane + carbon dioxide hydrates. 

3.2.2. Chemical potential difference between water and the empty lattice 

Chemical potential difference between pure water and the empty lattice was calculated 

using the following equation. 
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T P T P H V
dT dP

RT RT RT RT
 (3.10) 

In which EL-PW
0µ∆  is a parameter, EL-PW∆H  is expanded as in Equation (3.11) and EL-PW∆V  

is calculated by the difference of empty lattice and pure water molar volumes, according to the 

correlations presented in this section. 

 ( ) ( )
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0 0 0 0 2 2

 
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The liquid water volume was calculated from Equation (3.12). We generated this 

correlation based on Hilbert et al.78 and Lide79 experimental data. 
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exp 3.30859 10 Pa 101325.

− − − −

−

 = × − × + × 

 × × − 

V T T

P
 (3.12) 

For ice volume, we used the correlation proposed by Klauda and Sandler11. We proposed 

an empty lattice volume correlation by combining unit cell parameter information from Shpakov 

et al.80 and isothermal compression data from Klapproth et al.81, which yielded the following 

expression. 

 
( ) ( ) ( )

( )

3032EL 3 1 5 6 AV

10

10
m mol 11.8 5.39 10 K 1.78 10 K

46

exp 1.098 10 Pa 101325

−
− − −

−

  = + × + × ×    

 − × × − 

N
V T T

P

 (3.13) 

The enthalpy difference between the empty lattice and liquid water was one of the 

parameters we estimated and the difference in heat capacity used was the expression proposed by 

John, Papadopoulos and Holder14. Reference temperature and pressure are 273.15 K and 101,325 

Pa, respectively. 

3.2.3. Chemical potential difference between water in hydrate and water in the 

empty lattice. 

The chemical potential difference between water in hydrate and water in the empty lattice 

is represented in Equation (3.14). 
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ν

µ θ
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i j
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Cage occupancies were calculated according to Equation (3.15). 
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(3.15) 

The Langmuir constant was obtained from the integration of a radially symmetrical 

potential within a single hydrate cavity. We tested the Kihara Potential13 and its natural limiting 

case for zero hard core radius, the Lennard-Jones 12-6 potential13, proved to be more appropriate. 

This change will be further discussed in the Results section. Potential parameters used here are 

mean values between guest i potential parameters and water potential parameters. They were 

obtained as follows. The superscript “hyd” will be henceforth omitted for simplicity. 

 hyd ww

2

+
= ii

i

a a
a  (3.16)  

 hyd ww

2

σ σ
σ

+
= ii

i  
(3.17) 

 

 ( )1/ 2hyd
wwε ε ε=i ii  

(3.18) 
  

The cavity radius used here was the same as in John, Papadopoulos and Holder’s work14.  

However, we did not include multiple water shells in our work as the mentioned authors did.  We 

did not do so because the determination of water coordination and shell radii is somewhat arbitrary 

and the inclusion of such shells would not improve accuracy, for we fitted potential parameters to 

macroscopic properties. Coordination numbers used for the only shell were obtained in Sloan and 

Koh’s book3. 

The vapor phase fugacity was modelled by the Peng-Robinson82 cubic equation of state, 

contemplating mixtures using the classical mixing and combining rules with binary interaction 

parameters for the attractive parameter (a). Experimental data used here for carbon dioxide simple 

hydrates included only points at pressures and temperatures below the second quadruple point of 
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water + carbon dioxide system with water in excess (4.499 MPa and 283 K)3. Therefore, the only 

liquid phase present in the parameter estimation step is pure water. 

3.3. Parameter Estimation and Experimental Data 

3.3.1. Parameter Regression Methodology 

The parameters that are usually estimated in hydrate literature are those of the Langmuir 

constant and the hydrate formation parameters ( EL-PW
0µ∆ , EL-LW

0∆H  and EL-PW
0∆Cp ). In this work 

we follow the same guidelines and estimate values for 
4CHa , 

4
σ CH , 

4 B/εCH k , 
2COa , 

2
σ CO , 

2 B/εCO k

, EL-PW
0µ∆  and EL-LW

0∆H . However, as we acknowledged the relation between EL-LW
w∆H and the 

Langmuir constant parameters given by Equation (3.8), we included it in the estimation procedure 

and used calorimetric measurements besides the common three-phase equilibrium condition and 

occupancy experiments. 

We, then, used four different sets of experiments. There are those that measure cage 

occupancy or hydrate guest composition at fixed conditions of pressure, temperature and gas and 

liquid phase composition – henceforth called occupancy experiments and guest mole fraction 

experiments, respectively. Those of calorimetric nature, which measure hydrate enthalpy of 

dissociation will be henceforth called enthalpy of dissociation experiments. Finally, we have those 

that give a set of pressure, temperature and gas and liquid phase composition of equilibrium – 

henceforth called equilibrium experiments. As it is illustrated in Figure 4, not all of them depend 

on the same set of parameters. Cage occupancy and guest mole fraction at fixed temperature, 

pressure and global composition is a function of the Langmuir constant parameters only. Hydrate 

enthalpy of dissociation, in turn, is a function of the Langmuir constant parameters and EL-LW
0∆H  

only. The equilibrium experiments are the only ones that yield quantities whose modeling depend 

on the complete set of parameters.  
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Figure 4 – Scheme of stepwise parameter estimation. In the first objective function concerning cage 

occupancy experiments and guest mole fraction, only Langmuir constant parameters are needed. In the 

second objective function including calorimetric experiments, the enthalpy change between the empty lattice 

and pure water is added to the set. Finally, in the third step, the whole set of parameters is estimate using 

equilibrium condition experiments. 

 

One could possibly choose to minimize the whole set of parameters at the same time, by 

using an exhaustive minimization algorithm on the eight-dimensional parameter space. However, 

this is not an easy task since it would require a large quantity of evaluations – in order to increase 

reliability of a global optimization in an eight-dimensional space – of an effort-demanding 

objective function – because of the large amount of experimental data. Knowing from the 

homotopy continuation principle that the solution of simple problems is often a good guess for the 

solution of a more complex one, we chose to carry the estimation in a stepwise manner. Firstly, 

we used a stochastic algorithm (Particle Swarm Optimization – PSO)83 to minimize the objective 

function regarding cage occupancy and guest molar fraction. Then, with this set of optimal 

parameters, we minimized the second objective function – regarding hydrate enthalpy of 

dissociation – with an analytical method, for the objective function of this step is linear with respect 

to the parameters. Finally, we obtained the optimal EL-PW
0µ∆  from the objective function regarding 

equilibrium conditions with all other parameters fixed also using an analytical solution. The set of 

parameters obtained after those three steps were the initial guess of the final problem that combined 
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all the experiments and the three objective functions by using an objective scalarization 

methodology proposed here. In the last step we used Nelder-Mead deterministic algorithm84. 

At the end of each step, we obtained the parameter confidence regions, using the 

methodology described by Schwaab et al.83, which is represented in Equation (3.19).  

 ( ) ( )
p exp p

* pobj obj 1
,

exp p

1 α−
−

 
≤ +  − 

n n n

n
F p F p F

n n
 (3.19) 

In Equation (3.19), F stands for the Fisher distribution, α is the significance degree 

accepted in the analysis, np is the number of parameters being estimated, nexp is the number of 

experiments, Fobj
 is the objective function, p  is the parameter vector and *

p  is the parameter 

vector at the minimum of the objective function. In this work, we used a default of 95% confidence 

or 0.05 significance degree. 

Parametric correlation was then calculated from the confidence region points using the 

Pearson correlation coefficient definition. Other statistical metrics were also used to validate the 

proposed approach, namely the correlation coefficient between calculated and experimental 

values, the average absolute relative deviation and average absolute deviation. The remainder of 

this section introduces the three objective functions and the methodology used for combining them. 

3.3.2. Cage Occupancy and Guest Mole Fraction Objective Function 

In this step, we used a simple least squares objective function. It is represented in Equation 

(3.20). 

 ( )
exp,1 2obj exp calc

1
1=

= −∑
n

i i
i

F y y  (3.20) 

3.3.3. Enthalpy of Dissociation Objective Function 

The objective function used for obtaining the optimal value of EL-LW
w∆H  was the weighted 

least squares function. Differently from other experiments, all the calorimetric experiments 

included here had reported experimental uncertainties. The objective function is represented in 

Equation (3.21).  
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H H
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If all Langmuir constant parameters are fixed, this becomes a linear problem with respect 

to EL-LW
0∆H  and its solution is such that respects the necessary optimality condition of null first 

derivative. Hence, from the differentiation of Equation (3.21), the optimal value of EL-LW
0∆H  for a 

fixed set of σ  and B/ε k would respect the following relation. 
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(3.25) 

3.3.4. Equilibrium Experiments Objective Function 

The usual hydrate-liquid-vapor phase equilibrium is calculated from the chemical 

potential equalities that depend on all eight parameters, as seen in the Section 2.2. The following 

indirect least squares objective function was used – Equation (3.26) –, following the approach 

developed by Oliveira et al.85. With all other parameters fixed, this also becomes a linear problem.  
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Using the same approach as in Section 2.3.3, we obtain its analytical solution: 
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(3.27) 

This objective function deserves some comments. Usually on estimation problems, 

directly measured values of a given variable are compared to the ones obtained by the model from 

which the parameters are being estimated. However, here we opted to compare calculated chemical 

potential ratios to the ones obtained experimentally at a given temperature, pressure and 

composition, which equals 1. This procedure gives some advantages. Firstly, there is no hierarchy 

on which measured variable is regarded as input and output of the model. This is important for the 

hydrate phase equilibrium has some particularities. In general, reported errors in temperature 

measurements are lower than those in pressure and, for that reason, temperature would be a natural 

input variable. However, at temperatures above hydrate retrograde dissociation point, there is not 

a pressure solution for a given set of temperature and composition. In addition, comparing 

chemical potential equalities makes it possible to avoid expensive computational effort, as there is 

no need to solve the chemical potential equality for pressure, temperature or composition using 

root-finding algorithms. These algorithms would require several iterations that in turn depend on 

other iterative numerical methods, such as integrators, and ultimately might not lead to a solution. 

3.3.5. Global Objective Function 

There are infinite ways to combine the three aforementioned objective functions. In this 

work, we did not want to create any bias towards a certain type of experiment. This could have 

been done by using a weighted least squares function. However, some of our variables are indirect 

and others do not present coherent uncertainties. Thus, we proposed the following heuristic 

methodology as a way to avoid producing a set of parameters that describes well some phenomena 
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at the expense of others. This methodology, however, can be objectively applied to different 

problems involving several objective functions to take into account. 

If one would approximate an objective function by its corresponding Taylor series, one 

would obtain the following expression in matrix notation: 

 
* * *

Tobj obj obj 2 obj
g g g g

1

2
= +∇ ∆ + ∆ ∇ ∆

p p p
F F F p p F p  (3.28) 

However, knowing that the necessary condition to find an optimal point of a function is 

that its first derivative is zero with respect to all parameters, Equation (3.28) could be replaced by: 

 * *

Tobj obj 2 obj
g g g

1

2
= + ∆ ∇ ∆

p p
F F p F p  (3.29) 

Optimization algorithms in a general manner will search for the steepest descent of the 

objective function hyper surface. To combine all three objective functions in an unbiased manner, 

we proposed weights based on the second order derivative. Those weights act to even the 

magnitude of deviations from the optimal solution and they smooth the search for a steepest 

descent so that none of the objective functions is prioritized due to its naturally higher value. We 

defined the global objective function as follows. 

 obj obj obj obj
g 1 1 2 2 3 3= + +F w F w F w F  (3.30) 

Then, the following relation must be true around the optimal solution: 

 
T T Tobj 2 obj 2 obj 2 obj31 2

g 1 2 32 2 2
∆ = ∇ + ∇ + ∇

ww w
F dr F dr dr F dr dr F dr  (3.31) 

If obj
1F , obj

2F  and obj
3F  contribute equally to the global objective function, then an 

infinitesimal variation in the parameter space should give rise to contributions of obj
1F , obj

2F  and 

obj
3F  of the same order of magnitude. Therefore, the terms w1, w2  and w3  must satisfy the following 

conditions: 

 

T T2 obj 2 obj
1 1 3 3

T T2 obj 2 obj
2 2 3 3

 ∇ = ∇


∇ = ∇

w dr F dr w dr F dr

w dr F dr w dr F dr
 (3.32) 
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In which dr is a vector containing plausible deviations in the parameter space. By 

plausible deviations, we mean the difference between the upper and lower bounds of a given 

parameter that would lead to obj
1F , obj

2F  and obj
3F  within the limit stipulated by Equation (3.19) 

when all other parameters are held constant. 

This work was developed in IPython86 and the scientific library SciPy87 contains the 

algorithms used. Figures were created using Matplotlib88. 

3.3.6. Experimental Data 

Experimental data used in this work is listed in Table 3.  

Table 3 – Experimental data used for parameter estimation. 

 Number of 

Experiments 

Objective Function References 

Cage Occupancy 30 obj
1F  and obj

gF  89–91 

Guest mole fraction 24 obj
1F  and obj

gF  31,32,42,92–95 

Enthalpy of 

Dissociation from 

Calorimetry 

4 obj
2F  and obj

gF  31,32 

Equilibrium 

Conditions – Methane 

321 obj
3F  and obj

gF  96 

Equilibrium 

Conditions – Carbon 

Dioxide 

212 obj
3F  and obj

gF  96 

Equilibrium 

conditions – Methane 

+ Carbon Dioxide 

164 obj
3F  and obj

gF  

 

96 
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4. Results and Discussion 

4.1. First Step 

In the first step of the parameter optimization, we fitted the Langmuir constant parameters 

using occupancy and guest mole fraction experiments. This is an important step to diminish 

hydrate parameter correlation since it depends only on the Langmuir constant parameters. 

In a first attempt, we used the Kihara Potential with parameters a, σ  and B/ε k . However, 

results were not satisfactory. Firstly, we observed the occurrence of several different local minima 

that should be within the confidence region according to Equation (3.19). Some of them are 

displayed in Table 4. Furthermore, we noted a high degree of correlation among the Kihara 

parameters. Figure 5 shows the confidence regions of all three parameter when two of them are 

varying and the others are held constant at the optimal values. It shows the relation between a, σ

and B/ε k  for the two guests studied in our work. It can be seen that all three parameters are 

strongly correlated and that the confidence region for a includes zero, meaning that the absence of 

this parameters is as statistically significant as its presence. Quantitative measures of correlation 

are also displayed in Table 5. After that, we decided to use the Lennard-Jones potential, i.e. a 

equals zero. 

Table 4 – Minima found in the first step of parameter estimation. 

Minima found with Kihara Potential Minimum found with Lennard-

Jones Potential 

obj

1
F  

4

Å
CH

a  
4

Åσ
CH

 

4

B

/ K
ε

CH

k

 

2

Å
CO

a  
2

Åσ
CO 2

B

/ K
ε

CO

k

 

obj

1
F  

4

Åσ
CH

 

4

B

/ K
ε

CH

k

 

2

Åσ
CO

 
2

B

/ K
ε

CO

k

0.098 0.665 2.916 150.6 0.00 3.541 146.8 0.100 3.523 141.7 3.540 146.7 

0.104 0.0813 3.534 165.7 0.022 3.559 156.3 0.100 3.523 141.7 3.540 146.7 

0.091 2.770 1.034 173.9 2.201 1.546 198.9 18.97 0.0405 24071 0.6002 9598.3 

0.094 1.731 1.958 147.0 0.00 3.541 147.0 0.100 3.523 141.7 3.540 146.7 

0.099 0.435 3.125 146.7 0.00 3.540 146.7 0.100 3.523 141.7 3.540 146.7 
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Figure 5 – Confidence regions of Kihara potential parameters. Orange regions represent confidence regions 

for CO2 parameters and blue regions represent confidence regions for methane parameters. Parameter units 

were omitted for simplicity but they are the same as in Table 2. 

 

Table 5 – Correlation matrix of Kihara parameters. 

 
4CHa  

4
σ CH  

4 B/εCH k  
2COa  

2
σ CO  

2 B/εCO k  

4CHa  1.000000 -0.976251 0.973592 -0.007340 -0.007340 -0.010577 

4
σ CH  -0.976251 1.000000   0.973641 -0.007981 -0.007981 -0.010577 

4 B/εCH k  0.973592 0.973641 1.000000 0.033592 0.033592 -0.009745 

2COa  -0.007340 -0.007981 0.033592 1.000000 -0.930227 0.949807 

2
σ CO  -0.007340 -0.007981 0.033592 -0.930227 1.000000 0.959835 

2 B/εCO k  -0.010577 -0.010577 -0.009745 0.949807 0.959835 1.000000 

 

Estimation using the Lennard-Jones potential was more successful that using the Kihara 

potential. We found only one minimum using PSO algorithm and the confidence regions did not 
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include zero, as it happened with the Kihara potential. We also used the Nelder-Mead deterministic 

algorithm to find Lennard-Jones parameters using the Kihara σ  and B/ε k optimal values as initial 

estimates. All attempts converged to the same minimum (Table 4), indicating that the Lennard-

Jones potential was a better choice than the Kihara potential. 

Nonetheless, the Lennard-Jones potential also presents a high degree of correlation 

between σ  and B/ε k  in the scenario we studied. In Figure 6, we displayed the confidence regions 

of all possible pairs of Lennard-Jones parameters. Orange regions are the confidence regions when 

two parameters are varying and the others are held constant at the optimal values. Blue regions are 

the projection of confidence regions when all parameters are varying. Parameters of the same guest 

are very correlated and their functionality seems to be an exponential. Parameters of different 

guests seem to be independent, as they originate circular confidence regions. One of the reasons 

for these two phenomena might be the greater quantity of occupation and guest mole fraction 

experiments involving simple hydrates used in the estimation. Table 6 shows the Pearson 

correlation coefficient for all pairs of Lennard-Jones parameters calculated from the orange regions 

in Figure 6. It quantitatively confirms what have been stated by analyzing Figure 6. 

Table 6 – Correlation matrix after for Lennard-Jones parameters. 

 
4

σ CH  
4 B/εCH k  

2
σ CO  

2 B/εCO k  

4
σ CH  1.000000 0.899352 -0.016232 0.034393 

4 B/εCH k  0.899352 1.000000 -0.038440 0.002905 

2
σ CO  -0.016232 -0.038440 1.000000 0.955657 

2 B/εCO k  0.034393 0.002905 0.955657 1.000000 
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Figure 6 – Confidence regions of Lennard-Jones potential parameters. Orange markers represent confidence 

regions with two parameters varying and the others fixed at the optimal values. Blue markers represent 

confidence regions with all parameters varying. Insets show both confidence regions close to the optimal point 

in detail. Parameter units were omitted for simplicity but they are the same as in Table 2. 

 

From this minimization step, we obtained the following values for σ and B/ε k  and their 

limits according to Equation (3.19) (Table 7). 

Table 7 – Final results of step 1. 

Parameter Optimal Value Lower Bound Upper Bound 

4
ÅσCH  3.523 3.484 3.553 

4

B

/ K
εCH

k
 

141.675 136.048 147.934 

2
Åσ CO  3.540 3.493 3.578 

2

B

/ K
εCO

k
 

146.743 138.523 155.643 
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4.2. Second Step 

In this step, we minimized objective function obj
2F  with fixed Langmuir constant 

parameters. From this step, we obtained the optimal value of EL-LW
0∆H  and its limit values 

represented in Table 8. 

Table 8 – Final results of step 2 

Parameter  Optimal Value Lower Bound Upper Bound 

( )EL-LW 1
0 J mol−∆ ×H  -5173.6 -5776 -4441  

 

Before moving to step 3, we carried another study in order to verify the effect of including 

calorimetric experiments in parametric correlation. Parametric correlation can only be correctly 

assessed close to a minimum. In order to do it, we combined obj
1F  and obj

2F  in an manner analogous 

to that described in Section 2.3.5 and minimized the combined function. The minimum and the 

confidence region are depicted in Figure 7. The parametric correlation for each pair of parameters 

is displayed in Table 9. As it can be seen, the inclusion of this new set of experiments led to a great 

diminution of parametric correlation among the Lennard-Jones parameters. 

Table 9 – Correlation matrix after the second step. 

 
4

σ CH  
4 B/εCH k  

2
σ CO  

2 B/εCO k  EL-LW
0∆H   

4
σ CH  1.000000   0.362214 -0.019804 -0.032089   0.613498 

4 B/εCH k  0.362214   1.000000 -0.005672   0.003461   0.261060 

2
σ CO  -0.019804 -0.005672   1.000000 0.394594   0.439042 

2 B/εCO k  -0.032089   0.003461   0.394594   1.000000 0.159262 

EL-LW
0∆H   0.613498 0.261060 0.439042 0.159262 1.000000 
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Figure 7 – Confidence regions after step 2 (Occupancy and guest mole fraction experiments + calorimetric 

experiments). Orange markers represent confidence regions with two parameters varying and the others 

fixed at the optimal values. Blue markers represent confidence regions with all parameters varying. 

Parameter units were omitted for simplicity but they are the same as in Table 5 and Table 6. 
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4.3. Third Step 

From the set of Langmuir constant parameters and EL-LW
0∆H , the chemical potential 

difference between water and the empty lattice was estimated. The parameter obtained and its limit 

values are listed in Table 10. 

Table 10 – Final results of step 3. 

Parameter  Optimal Value Lower Bound Upper Bound 

( )EL-PW 1J molµ −∆ ×w  1075.79 1070.78 1080.8 

4.4. Global Estimation Results 

The parameters obtained from the global estimation procedure are listed in Table 11, along 

with the initial estimates. Table 11 also compares them to values obtained by other authors. σ and 

B/ε k  are close to the values reported in literature. However, EL-LW
0∆H  and EL-PW

0µ∆  are 

considerably different from literature that were estimated from hydrate equilibrium data. Their 

values, nonetheless, approach the ones obtained by molecular simulation from Jacobson, Hujo and 

Molinero97. 

Table 12 shows the weighted objective functions prior to and after the last estimation step. 

From this table, one can see that the description of hydrate enthalpy of vaporization and hydrate 

equilibrium conditions were enhanced in expense of the description of cage occupancies and guest 

molar fractions. This was already expected because the initial guess came from a an optimal obj
1F  

value that did not depend on EL-LW
0∆H  and EL-PW

0µ∆ , while obj
2F  and obj

3F  were minimized with σ  

and B/ε k  held constant. Another interesting result is that the stepwise objective functions 

approach 0.6, contributing in the same order of magnitude to the global result. 
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Table 11 – Comparison between parameters obtained in this work and in literature. 

Reference 
4

ÅCHa

 

4
ÅσCH 4

B

/ K
εCH

k
2

ÅCOa

 

2
Åσ CO

 

2

B

/ K
εCO

k

 

( )

EL-LW

0

1

/

J mol
−

∆

×

H

 

( )

EL-PW

1

/

J mol

µ

−

∆

×

w

Optimal 

Parameters 

0 3.373 130.491 0 3.537 137.318 -5363.9 797.33 

Initial Guess 0 3.523 141.675 0 3.540 146.743 -5173.6 1075.79 

14 0.230 3.533 142.119 0.677 3.486 227.388 -4297 1120 

45 0.3834 3.17784 154.923 0.6805 2.97175 176.242 - - 

98 0.260 3.601 141.298 0.677 3.450 184.558 - - 

97 - - - - - - -5473 714 

 

Table 12 – Weighted global objective function prior to and after global estimation. 

 Initial Guess Minimum Found 

obj
1F  0.245491 0.6002808 

obj
2F  2.748847 0.6347308 

obj
3F  1.968253 0.6015880 

obj
gF  4.962592 1.8365997 

 

Parametric correlation can be observed quantitatively in Table 13 and qualitatively in 

Figure 8. From Figure 8, we see that most of the confidence regions approach circles or 

uncorrelated ellipses. Parameters σ  and B/ε k   for methane still present a high degree of 

correlation (Pearson correlation coefficient of -0.838428) and their correlation is higher than 

observed in step 2. The two parameters also became negatively correlated after the global 

estimation. Highly correlated pairs of parameters include EL-PW
0µ∆ : 

2 B/εCO k  and EL-PW
0µ∆ ;  

4 B/εCH k  and EL-PW
0µ∆ ; and 

4
σ CH  and EL-PW

0µ∆ . This should be expected, as there is only one type 

of experiment that involves this parameter. One can see that those parameters that can be obtained 
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from different experiments present lower degrees of correlation. Figure 8 also displays the 

approximate confidence intervals of parameters with 95% confidence in the legends of each graph. 

Table 13 – Parametric correlation after global estimation. 

 
4

σ CH  
4 B/εCH k  

2
σ CO  

2 B/εCO k  EL-LW∆ wH   EL-PWµ∆ w  

4
σ CH  1.000000   -0.838428   0.021386 -0.058750   0.292511   0.602950 

4 B/εCH k  -0.838428   1.000000 0.029726 -0.095267 -0.144836   0.683058 

2
σ CO  0.021386 -0.005672   1.000000 0.253835   0.477904 -

0.025630 

2 B/εCO k  -0.058750   -0.095267 0.253835   1.000000 -0.072771   0.715731 

EL-LW∆ wH   0.292511   -0.144836   0.477904 0.159262 1.000000 0.075560 

EL-PWµ∆ w  0.602950 0.683058 -0.025630 0.715731 0.075560 1.000000 
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Figure 8 – Confidence regions after global estimation (all experiments included in the weighted objective 

function). Orange markers represent confidence regions with two parameters varying and the others fixed at 

the optimal values. Blue markers represent confidence regions with all parameters varying. Approximate 

confidence intervals of parameters are displayed in the legends of each graph. Parameter units were omitted 

for simplicity but they are the same as in Table 9. 

 

Figure 9 compares the experimental values of cage occupancy to the ones calculated using 

the new parameters. The model does not provide a very good agreement to experimental data, as 

the points are scattered around the quadrant bisector and the correlation coefficient between 

experimental and calculated values is not close to unity. The same happened to the guest mole 
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fraction. Although the correlation coefficient was slightly higher, it is still considerably far from 

unity. In most cases, the model underestimates guest mole fraction (Figure 10). As it was 

mentioned earlier here, these experiments are somewhat discrepant and this might account to the 

poor prediction performance. Quantitative measures of disagreement are reported in Table 14 as a 

supplement to the figures. 

Calculated hydrate enthalpy of dissociation is in good agreement to experimental data. 

As it can be seen in Figure 11, the model yielded results within the error bars of three of the four 

experiments used in parameter estimation. The mean absolute deviation was around 1.14 kJ/mol 

of gas, the same magnitude of the mean experimental error (1.17 kJ/mol of gas) 

The analysis of equilibrium experiments was split into three different parts to avoid 

misinterpretation of the results. For methane, Figure 12 shows that the model presents a good 

agreement in low temperatures, while it underestimates equilibrium temperature at higher 

temperatures. This is due to the poor accuracy of the model at high pressures. This phenomenon 

can be better understood by analyzing Figure 13, which shows the pressure-temperature diagram 

for methane hydrates in excess of water. At low pressures, the full line that represents predicted 

equilibrium temperatures for a given pressure is very close to the markers representing 

experimental data. It is only above 1x108 Pa that the model seriously deviates from experimental 

data. One of the reasons for the poor performance is hydrate retrograde dissociation and the 

modelling of volume changes. The Clapeyron equation states that the increment of the saturation 

pressure curve with temperature depends on the enthalpy change of phase transition and the 

volume change of phase transition. 

 diss

diss

∆
=

∆
HdP

dT T V
 (4.1) 

Hence, hydrate retrograde dissociation can only start at the point in which diss∆V  equals 

zero. The dashed line in Figure 13 is a set of points in which diss∆V  is zero according to the phase 

modeling used in our work and the following equation: 

 H
diss max∆ = + −G LW ELV x V V V  (4.2) 
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In this equation, H
maxx  is the maximum guest molar fraction, that is, when the total cage 

occupancies for both small and large cages approach unity. It shows that the combination of the 

equation of state for the gas phase and the volume correlations for the liquid and the hydrate phase 

cannot accurately describe this phenomenon, as the dashed line does not cross the experimental 

dispersion at the retrograde dissociation point. Figure 13 also shows that correct phase volume 

description would not suffice to model equilibrium at such high pressures, meaning that there is 

still room for improvement in the calculation of enthalpies for each phase. Despite this, the 

correlation coefficient between experimental and calculated values approaches unity and the mean 

absolute deviation including points at high pressure is less than 2 K. 

For carbon dioxide simple hydrates (Figure 14 and Figure 15), the correlation coefficient 

was even closer to unity and the mean absolute deviation was lower than 1K. The best results in 

terms mean absolute deviation, however, were those for mixed hydrates. In this scenario, mean 

absolute deviation was lower than 0.5K and the correlation coefficient between experimental and 

calculated values was 0.9834. Those two metrics are apparently incoherent, but they can be 

understood by analyzing Figure 16. This figure shows that the majority of points are near the 

quadrant bisector, lowering the average deviation, while only a few points are considerably far 

from it, diminishing the value of the correlation coefficient. 
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Table 14 – Statistical metrics for the quality of the estimation procedure. 

Property Average Absolute 

Relative Deviation 

(%) 

Average Absolute 

Deviation 

Correlation 

Coefficient 

Cage 

Occupancy 

6.426 0.051 0.882 

Guest mole 

fraction 

10.18 0.011 0.975 

Enthalpy of 

Dissociation 

from 

calorimetry 

1.809 

 

1.060 (kJ/mol of gas) 0.961 

 

Equilibrium 

Temperature - 

Methane 

0.552 1.603 K 0.995 

Equilibrium 

Temperature – 

Carbon Dioxide 

0.311 0.802 K 0.998 

Equilibrium 

Temperature – 

Methane + 

Carbon Dioxide 

0.129 0.358 K 0.983 
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Figure 9 – Comparison between measured and calculated values of occupation fraction. Experimental data 

from Kuhs et al.89; Qin and Kuhs90; and Uchida et al.91 . 

 

 

Figure 10 – Comparison between measured and calculated values of guest mole fraction. Experimental data 

from Kang, Lee and Ryu31; Lievois et al.32; Yoon et al.42; Handa92; Rueff, Sloan and Yesavage93; Circone et 

al.
94; and Henning et al.95 
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Figure 11 – Comparison between measured and calculated values of enthalpy of dissociation. Experimental 

data from Kang, Lee and Ryu31 and Lievois et al.32 

 

Figure 12 – Comparison between measured and calculated values of equilibrium temperature for methane 

hydrates. Experimental data from NIST96. 
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Figure 13 – Hydrate-liquid-gas three-phase equilibrium line for methane hydrates. Experimental data from 

NIST96. 
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Figure 14 – Comparison between measured and calculated values of equilibrium temperature for carbon 

dioxide hydrates. Experimental data from NIST96. 

 

 

Figure 15 – Hydrate-liquid-gas three-phase equilibrium line for carbon dioxide hydrates. Experimental data 

from NIST96. 
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Figure 16 – Comparison between measured and calculated values of equilibrium temperature for methane + 

carbon dioxide hydrates. Experimental data from NIST96. 

4.5. Comments on Hydrate Enthalpy of Dissociation 

After addressing the results from parameter estimation, we can make some comments on 

hydrate enthalpy of dissociation. Some experimental works report hydrate enthalpy of dissociation 

without its corresponding values of equilibrium temperature and pressure36. This is mostly due to 

experimental difficulties regarding calorimetric experiments. In Figure 17, we display several 

enthalpy of dissociation experimental data together with predicted isotherms. The pressure used 

for calculating enthalpy of dissociation was that of the hydrate three-phase equilibrium at a given 

T and a given carbon dioxide gas mole fraction. However, in order to compare calculations to 

experimental data, the x-axis in Figure 17 shows CO2 hydrate mole fraction in a guest basis, i.e. 

discounting water present in the structure. From Figure 17, we see that the experimental data 

discrepancies are not inconsistent, as it might appear. The model predicts a considerably large 

range of values for enthalpy of dissociation and if temperature and pressure are not controlled, 

measurements can be scattered throughout the whole range. 
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Figure 17 – Enthalpy of dissociation of methane + carbon dioxide hydrates. Pressure used for calculation was 

the equilibrium pressure at fixed temperature and CO2 gas mole fraction. X-Axis shows CO2 hydrate fraction 

in guest basis (discounting water in the hydrate phase). Experimental data from Lee et al.36, Rydzy et al.33 and 

Kwon et al.99 . 

 

Figure 17 also shows that for most of the isotherms, the rise in CO2 mole fraction causes 

the rise in enthalpy of dissociation. However, an interesting phenomenon occurs at the 285.0 K 

isotherm. There is an abrupt interruption around 90% CO2 hydrate mole fraction and after the 

discontinuity, the increase in mole fraction engenders a diminution of enthalpy of dissociation. 

This is probably related to the phase transition of the CO2-rich gas to a CO2-rich liquid. It is 

reasonable to suppose so because the second quadruple point of CO2 is around 285.0 K. Isotherms 

at higher temperatures change their behavior smoothly in a supercritical-like manner. It should be 

noted, however, that the only liquid modelled during parameter estimation was liquid water and 

that the solubility of carbon dioxide in water and water in carbon dioxide was neglected. This 

means that quantitative information when other liquids are present might not be reliable. 

Figure 18 brings about a new point of view to this discussion. From Equation (3.8), we 

identify two major contributions to the enthalpy of dissociation. The enthalpy of disenchlatrating 

a given gas – representing the terms ( )
guest guest guest cage

H H H 2
, , B

1 1 1 1

lnν θ
= = = =

∂ + −  ∂ 
∑ ∑ ∑∑
n n n n

R
j j j w i i j i j

j j j i

x H RT x x RT C k T
T
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of Equation (3.8), but by gas mole fraction – and the enthalpy of melting the empty hydrate 

structure  – representing the term ( )H EL-PW− ∆w wx H  of Equation (3.8), but by gas mole fraction. It is 

clear from Figure 18 that water contributes the most to the enthalpy change, but the abrupt 

transition at 90% CO2 gas mole fraction comes from the guest contribution, indicating a phase 

change. 

 

Figure 18 – Total enthalpy of dissociation of mixed methane + carbon dioxide hydrates and the energetic 

contribution of water and guests. 

 

It has been argued that hydrate enthalpy in binary mixtures depends mostly on the 

occupation of large cavities33,36,43. Figure 19 is an attempt to verify this affirmation. In each pair 

of diagram it presents, all properties were calculated at constant temperatures. The full blue lines 

on the left hand diagrams represent hydrate enthalpy of dissociation and it reports to the left hand 

side y-axis. The green dashed line represents the equilibrium pressure at fixed temperature and 

CO2 gas mole fraction. The right hand diagrams represent cage occupancy of methane and carbon 

dioxide as a function of CO2 gas mole fraction. Temperature and pressure in which they were 

calculated are represented in the corresponding left hand side diagram. The red dotted line and the 

yellow dash-dotted line represent the occupation fraction of carbon dioxide in the large and small 
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cavities, respectively. The full light blue line and the dashed dark blue line represent the occupation 

fraction of methane in the large and small cavities, respectively. 

In the first diagram at 280.00 K, the carbon dioxide occupation fraction of large cavities 

is positively correlated to the enthalpy of dissociation. It can also be seen that the enthalpy of 

dissociation is negatively correlated to the equilibrium pressure throughout the whole range of CO2 

gas mole fraction. 

At 285.00 K, those relations become less clear as illustrated in the second diagrams of 

Figure 19. Occupation of large cavities by CO2 increases with higher percentages of CO2 in the 

gas phase throughout the whole diagram. This positive correlation is also true for enthalpy of 

dissociation, until the aforementioned discontinuity. After that point, the correlation between 

enthalpy of dissociation and CO2 gas mole fraction is negative. The same kind of inversion happens 

to the equilibrium pressure. Before the discontinuity, equilibrium pressure lowers with an increase 

in CO2 in the gas phase. Apparently, the only relation that holds before and after the phase change 

is the negative correlation between equilibrium pressure and enthalpy of dissociation.  

In the third diagram of Figure 19, the non-trivial relation between amongst these 

properties becomes even more evident as the gas transit smoothly from a gas-like phase to a liquid-

like phase. However, this non-clear dependency should be expected. After all, the dissociation 

enthalpy is a function of the molar enthalpy of the three phases involved in equilibrium. Therefore, 

if the enthalpy of gases and liquids is sensitive to rises in pressure and temperature, these properties 

will contribute in their own manner to the behavior of the enthalpy of dissociation. 

The evolution of methane occupation fraction is also interesting. Closer to pure methane 

(low CO2 gas mole fraction) methane occupation fraction in large cavities is greater than in small 

cavities. However, with increasing amount of CO2 in the gas phase, methane tends to occupy small 

cavities rather than large ones. At higher temperatures, this inversion happens with lower amounts 

of CO2. 
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Figure 19 – Evaluation of pressure, temperature and cage occupancy effects on mixed hydrates enthalpy of 

dissociation. 
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5. Conclusions 

In this work, we derived an expression for hydrate enthalpy of dissociation directly from 

the van der Waals and Platteeuw Statistical Thermodynamics model. This expression allows the 

calculation of hydrate enthalpy of dissociation at any equilibrium conditions for any gas mixture 

without introducing any other parameters. 

We also used this expression to include calorimetric experiments into hydrate parameter 

estimation. We then proposed a stepwise parameter estimation and the calorimetric experiments 

proved useful for accelerating the estimation convergence, as we did not have to use exhaustive 

optimization methods. 

The first step of the parameter estimation showed that, for the binary clathrates studied 

here, the hard-core parameter of the Kihara potential was not statistically significant and we opted 

to use the Lennard-Jones potential. As it was shown in the results section, the use of the Lennard-

Jones potential did not compromise the model performance, as it was able to predict hydrate 

properties in a wide range of conditions. 

Even without the hard-core parameter, the Langmuir constant parameters presented a high 

degree of correlation. However, the second step sufficed to diminish parametric correlation to a 

satisfactory level. 

Finally, we showed that the van der Waals and Platteeuw model predicts the empirical 

observation that the cage occupation by a larger guest yields a higher enthalpy of dissociation. 

However, this was not valid throughout the whole range of temperature studied. We saw that the 

fluid phases also have an impact on this property. 

Future work on the model could focus on the inclusion of different kinds of experiments 

in parameter estimation. Gas hydrate crystallographic measurements could be included in an 

attempt to reduce parameter correlation. However, this would need further investigation on the van 

der Waals and Platteeuw model. 
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