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ABSTRACT 

Coelho, Fabiana Maria Bastos. Determination of Carbon Monoxide Mass Transfer 

Coefficient in Different Liquid Phases using Hybrid Optimization Strategy. Rio de Janeiro, 

2018. Dissertation (Master of Science) – Engineering of Chemical and Biochemical Processes 

Programme, Escola de Química, Universidade Federal do Rio de Janeiro, 2018. 

Synthesis gas fermentation has been proposed in literature to decrease urban solid waste 

environmental impact. However, the low gas-liquid mass transfer is one of the major bottlenecks 

of this process. Therefore, the present work aimed to evaluate the overall volumetric mass transfer 

(kLa) in a Stirred Tank Reactor using different compositions of liquid phases. Due to the absence 

of probes to determine carbon monoxide (CO) concentration in liquid phase and gas 

chromatography cost, a myoglobin bioassay technique was executed. kLa was estimated using a 

hybrid optimization method (Particle Swarm Optimization - PSO, and Sequential Quadratic 

Programming – SQP) and Maximum Likelihood Estimation (MLE) as objective function. Pure CO 

(99.5%) was fed into a reactor filled with 0.75 and 1.0 L of liquid mixture. Three agitation speeds 

and five specific gas flow rates were tested. Four different liquid mixtures were analysed: pure 

distilled water; distilled water and 20% perfluorodecalin (PFC); distilled water and 0.15% Tween® 

80; and distilled water, 20% PFC and 0.15% Tween® 80. A kLa of 603.49 h-1 in distilled water, 

PFC and Tween® 80 at 500 rpm and 2.7 min-1. The highest kLa for pure distilled water reported 

so far was achieved in the present work: 399.06 h-1 at 500 rpm and 2.7 min-1. Therefore, hybrid 

optimization was successfully performed and kLa results were comparable to literature. PFC and 

Tween® 80 increased CO dispersion in the liquid phase, increasing mass transfer. 

Keywords: synthesis gas; overall volumetric mass transfer coefficient; perfluorodecalin; Tween® 

80; myoglobin bioassay; maximum likelihood estimation; particle swarm optimization.
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Chapter I – INTRODUCTION 

Fermentation is a very complex process in biotechnological industry. It can be described 

as a bioreaction in which components (substrate and nutrients) are converted biologically using a 

biological catalyst (microorganism) into another component (bioproducts). The process is 

separated in two types: aerobic fermentation, in which oxygen supply is required (mainly air since 

it is a cheap source); and anaerobic fermentation, which occurs in absence of oxygen. Some 

anaerobic fermentations present gas mixtures as substrate and carbon monoxide as carbon source 

(SHEN et al., 2015). Due to its importance to the field and complexity, many studies have been 

developed in this area, especially regarding bioreactor hydrodynamics and gas-liquid systems. 

Residues are an interesting and cheap source of nutrients that can be converted to biofuels 

and biochemicals through a hybrid thermochemical-biochemical process. Industrial, urban solid 

waste, lignocellulosic and other residual biomass can be converted to synthesis gas through 

pyrolysis. Synthesis gas, also called syngas, is an important building block in chemical industry, 

and its composition will depend upon pyrolysis conditions. Hydrogen, carbon monoxide and 

carbon dioxide ratio can vary depending on particle size, moisture, ash, temperature, reactor type, 

biomass composition and more (MOHAMMADI et al., 2011). 

The resulting gas can be fermented by some Clostridium bacteria, capable of converting 

synthesis gas into ethanol, butanol, lactic acid, acetic acid, butyric acid and other chemicals 

(BREDWELL et al., 1999). The resulting process is a hybrid route based in thermochemical 

(residue pyrolysis) and biochemical (fermentation) conversion of all components present in 

residual biomass (MOHAMMADI et al., 2012). Commercially, LanzaTech collaborated with 

Concord BlueEnergy to produce ethanol and 2,3-butanediol from the fermentation of high quality 

synthesis gas obtained via gasified municipal solid wastes and agricultural residues. INEOS New 
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Planet Bioenergy also produce ethanol from syngas obtained through the gasification of vegetative 

waste and agricultural biomass (SHEN et al., 2015).  

However, one of the major bottlenecks in this process, especially concerning 

commercialization, is the mass transfer between gas and liquid phases due to the low solubility of 

synthesis gas (BREDWELL and WORDEN, 1998; BREDWELL et al., 1999; KLASSON et al., 

1991; WORDEN and BREDWELL, 1998). The increase of gas solubility in culture media may 

enhance the availability of gaseous substrate to cells, improving both cell’s autotrophic growth 

and product conversion (BREDWELL and WORDEN, 1998; VEGA et al., 1989). 

Many approaches have been proposed in literature in order to increase mass transfer in gas-

liquid systems, such as increasing gas and liquid flow rates, larger specific gas-liquid interfacial 

areas, different reactor configurations, innovative impeller designs and more (MUNASINGHE and 

KHANAL, 2010; MUNASINGHE and KHANAL, 2012; SHEN et al., 2014a; UNGERMAN and 

HEINDEL, 2007; YASIN et al., 2014). However, as far as we know, none have used liquid 

mixtures in order to increase CO mass transfer to liquid phase. Perfluorochemicals or 

perfluorocarbons (PFC) have been used in aerobic systems to increase the volumetric mass transfer 

of oxygen into liquid phase, without damaging cells (CHO and WANG, 1988; ELIBOL and 

MAVITUNA, 1995).  

However, as observed in the present work, the immiscibility of PFC in water can 

compromise the gas-liquid system and affect negatively the overall volumetric mass transfer 

coefficient. Due to carbon monoxide affinity to organic phase, its transfer to aqueous phase is 

impaired and, therefore, kLa values for these systems were comparatively low. Surfactant Tween® 

80 was used in order to bypass this situation. 
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Another issue faced was the experimental uncertainty due to the bioassay method, which 

is extremely delicate and care must be taken in many steps during solution preparation and 

sampling. For that reason, this work proposes two different optimization strategies, non-

deterministic (Particle Swarm Optimization – PSO) and deterministic, using Maximum Likelihood 

Estimation (MLE) in order to estimate carbon monoxide saturation and kLa, comparing both of 

them.  

Therefore, the main goal of this work is to evaluate the overall volumetric mass transfer 

coefficient for carbon monoxide in a stirred tank reactor using different liquid phases 

compositions: pure distilled water; distilled water and 20% PFC; distilled water and 0.15% 

Tween® 80; and distilled water, 20% PFC and 0.15% Tween® 80; as well as different gas flow 

rates, agitations speeds and liquid volumes. 

The present dissertation was divided in nine chapters in order to easy reading and 

comprehension, including this introductory chapter. The following chapter presents the main 

objective and aims of this work while Chapter III summarize important and base concepts in a 

Literature Review. Chapter IV details the methodology implemented during experimental and 

analysis phase, including the myoglobin bioassay method, optimization techniques and materials 

used. Chapter V display experimental results and discussion in order to express how the difference 

in the gas-liquid system affected bioreactor hydrodynamic and kLa. Concluding marks, 

recommendation for future work, and references used in the elaboration of this work are presented 

subsequently. Appendix assemble all plots created in MATLAB during kLa estimation, including 

CO concentration through time in all experiments (data and uncertainties), model fitting to 

optimized overall mass transfer coefficient and confidence regions for all experiments and levels 

of confidence. 



4 

Chapter II – OBJECTIVES 

The main objective of this work was to estimate the overall volumetric mass transfer 

coefficient (kLa) in a multiphase stirred tank reactor using different liquid phase compositions. For 

that purpose, the following aims were set: 

 

 Identify the best conditions of agitation speed, carbon monoxide flow rate and 

liquid phase composition regarding kLa in the stirred tank bioreactor used. 

 Evaluate the carbon monoxide concentration in the liquid phase by elaborating a 

script to transform the data obtained in spectrophotometer in mathematical values. 

 Estimate overall volumetric mass transfer coefficient and carbon monoxide 

saturation through Maximum Likelihood in MATLAB using a hybrid optimization 

technique. 

 Obtain likelihood confidence regions by selecting objective function values 

evaluated with Particle Swarm Optimization strategy. 
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Chapter III – LITERATURE REVIEW 

 

III.1 – Project Overview and Background 

Urban and industrial solid waste are a very complex problem for the environment. 

Comparing to past years, constant progress and population growth enhanced the amount of 

residues generated. According to ABRELPE (2016), a Brazilian representative at the International 

Solid Waste Association (ISWA), 78.3 million tons of urban solid waste were produced in Brazil 

in 2016. Although it represents a 2% decrease referring to 2015, 9% of this solid waste was 

improperly disposed. Moreover, 41.7 million tons were destined for sanitary landfill and 29.7 

million tons were designated to controlled landfills or dumps. Also, due to Brazilian’s economic 

crises, 5.7% less jobs were offered and 17,700 formal posts for public cleaning services were shut 

down. Cities had to spend approximately R$ 2,067,696,000.00 in urban solid waste collection, 

which represents approximately US$ 650 million (ABRELPE, 2016).  

Urban solid waste can impact the environment and public health since it contaminates soil, 

water and air if not treated or disposed properly (CHERUBINI, 2010; DEVARAPALLI and 

ATIYEH, 2015). Moreover, collecting and disposing urban solid waste correspond to a public 

expenditure of $ 650 million and part of this amount could be transformed into revenue for the 

government and companies. Residue thermal conversion is already a reality all over the world. In 

Brazil, sugar cane residues like straw and bagasse are burned to generate electric energy for 

biorefinery plants (CONAB, 2011). In many countries in Europe, residues are combusted in order 

to generate heating and electrical energy for rural and urban areas (KOKALJ and SAMEC, 2013; 

REDDY, 2006; WORLD ENERGY COUNCIL, 2016). In Florida, waste-to-energy plants cut 

landfilled waste by 90% (WORLD ENERGY COUNCIL, 2016). 
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Residue pyrolysis result in synthesis gas, which is a building block in chemical industry 

and can be converted by anaerobic bacteria into very important biochemicals and biofuels, such as 

ethanol, butanol, butyric acid, 2,3–butanediol, acetic acid and more (LIOU et al., 2005; LATIF et 

al., 2014; MOHAMMADI et al., 2011; ORGILL et al., 2013; PANTALÉON et al., 2014). This 

hybrid thermochemical-biochemical process, however, has a major technological drawback, which 

is the low mass transfer between gas and liquid phases due to gas low solubility (KLASSON et 

al., 1991). Therefore, much have been discussed in literature to enhance mass-transfer, such as 

using a hollow fiber membrane bioreactor (MUNASINGHE e KHANAL, 2012; SHEN et al., 

2014; YASIN et al., 2014) and a dual-impeller stirred tank bioreactor (UNGERMAN and 

HEINDEL, 2007). 

Synthesis gas fermentation have also other advantages in relation to well-established 

processes in chemical industry. This fermentation presents a higher tolerance to sulphur 

compounds; a higher variety of CO, H2 and CO2 composition in synthesis gas due to biomass 

composition; lower operational pressure and temperature, which decreases operational costs; and 

high productivity and product uniformity when compared to Fischer-Tropsch process (LATIF et 

al., 2014). Regarding other biotechnological conversion of lignocellulosic biomass, synthesis gas 

fermentation eliminates a complex pre-treatment stage, which would enhance operational cost due 

to enzyme acquisition. Moreover, all components of lignocellulosic biomass are converted and 

thermodynamic equilibrium relationships are avoided. Biomass composition does not interfere in 

the gas composition obtained through pyrolysis or gasification, and the resulting H2:CO:CO2 ratio 

does not affect fermentation (KLASSON et al., 1991; SHEN et al., 2014). 
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III.2 – Perfluorocarbons (PFC) and Tween® 80 

In the present dissertation, perfluorodecalin (PFC) and Polysorbate-80 (Tween® 80) are 

two chemicals used to increase mass transfer in gas-liquid systems. Both have been extensively 

applied in industry for many purposes. PFCs were first synthesized during II World War due to its 

resistance to uranium based compounds (LOWE et al., 1998). Tween® 80 is a non-ionic surfactant 

and emulsifier often used in foods and cosmetics (GOFF, 1997; MADIC et al., 2013). 

 

III.2.1 – Perfluorocarbons 

Perfluorocarbons are molecules in which all hydrogen atoms were replaced by fluorine, 

resulting in molecules with higher molecular weight and density than water. The most common 

compound among perfluorocarbons is Perfluorodecalin, which is a cyclic alkane with 18 fluorine. 

Perfluorodecalin has a density of 1.908 g/cm3 and kinematic viscosity of 2.66 mm2/s and its 

structure is represented in Figure III.1 (LOWE et al., 1998).  

 

Figure III.1 Perfluorodecalin structure (SIGMA-ALDRICH). 

 

PFCs have a high chemical and thermal stability due to carbon-fluorine strong bond. 

Moreover, fluorine present in the structure encompasses completely the molecule providing an 

electronic and steric protection. Although immiscible in aqueous systems, PFCs have been used in 

biotechnological processes due to its biological inertness and high gas solubility, which facilitate 
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respiratory-gas delivery to cells (AMARAL, 2007; AMARAL et al., 2008; LOWE, 2002).These 

molecules can dissolve large quantities of oxygen and carbon dioxide without chemical reactions. 

Also, oxygen dissociation from the PFC molecule is faster than the dissociation from hemoglobin, 

increasing the mass transfer coefficient (LOWE et al., 1998). The solubility is related to molar 

volume of dissolved gas, being carbon dioxide the most soluble gas (200 mmol.L-1), followed by 

oxygen, carbon monoxide and nitrogen, which is the less soluble (LOWE, 2002).  

The first work in the area was performed with lab rats, which were capable of “breathing” 

when submerged in PFC (CLARK and GOLLAN, 1966). Perfluorocarbons were responsible for 

enhancing oxygen uptake and mass transfer (CHO and WANG, 1988; ELIBOL, 1996; ELIBOL, 

1997; ELIBOL AND MAVITUNA, 1995; JU and LEE, 1991; JUNKER et al., 1990; MCMILLAN 

and WANG, 1987; TURICK and BULMER, 1998; WASANASATHIAN and PENG, 2001) and 

increase cell density or exponential growth phase (ELIBOL, 1996; ELIBOL, 1997; JUNKER et 

al., 1990; WASANASATHIAN and PENG, 2001). Cho and Wang (1988) reported that PFC did 

not harmed cells and improved overall volumetric mass transfer coefficient (kLa) of oxygen. 

The main advantage of using PFC in bioprocess engineering is related to gas-liquid mass 

transfer. It has been proved that PFCs can regulate air or oxygen intake, increasing cell growth in 

these systems and consequently productivity. In this way, PFC would decrease shear stress in cells 

due to conventional aeration and agitation (AMARAL, 2007). Moreover, PFC recoverability is 

commercially favourable and easy, since PFC tends to decant after reposing due to its high density 

and immiscibility in aqueous media. Easy recovery, re-sterilization, re-gassed and return to 

bioreactor makes this expensive chemical a commercially attractive one (LOWE, 2002). 
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III.2.2 – Tween® 80 

Tween® is a commercial name for a series of non-ionic surfactants derived from polyethoxy sorbitan esters, which 

are mainly used as emulsifiers, defoamers, dispersants and stabilizers in food, cosmetics and biodegradation media 

(AYORINDE et al., 2000). Tween® 80, or polysorbate 80, is a viscous yellow liquid of density 1.06 g/cm3 and 

kinematic viscosity between 300 and 500 mm2/s. Its structure is represented in Figure III.2Figure III.2 Polysorbate 

80 (Tween® 80) structure, where sum of w, x, y and z has to be 20 (SIGMA-ALDRICH). 

 

. It has a high potential in thermo-regulated ion-separation technologies and is present in 

ice-creams as an emulsifier to make the product smoother, easier to handle and more resistant to 

melting (GOFF, 1997; MADIC et al., 2003). It also acts as surfactant in soaps and cosmetics. 

Another non-ionic polysorbate-type surfactant used in bioprocess is Tween® 20, or polysorbate 

20, which is also an emulsifier. The difference between Tween® 80 and 20 are its commercial 

polysorbate formulations. Tween® 20 is made with a mixture of stearic, palmitic, myristic, and 

lauric acids, whereas Tween® 80 is made of stearic, oleic and linoleic acids (AYORINDE et al., 

2000). 

 

Figure III.2 Polysorbate 80 (Tween® 80) structure, where sum of w, x, y and z has to be 20 (SIGMA-ALDRICH). 

 

Many studies, however, have been done to improve polysorbate 80 and 20 usage towards 

gas-liquid mass transfer due to enhanced knowledge about surface-active substances in absorption 

processes (BELO et al., 2011). Low concentrations of surface agents can affect gas-liquid mass 

transfer parameters and bioreactor hydrodynamics, such as gas holdup, bubble diameters, gas 
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liquid interfacial area, turbulence and more (KIM et al., 2006; LOUBIÈRE and HÉBRAND, 2004; 

PAINMANAKUL et al., 2005; RUZICKA et al., 2008; SARDENING et al., 2006; 

VASCONCELOS et al., 2003). Bredwell and Worden (1998) used Tween® 20 to measure 

microbubble in a dispersion reactor in order to evaluate bioreactor hydrodynamics and gas-liquid 

mass transfer. Belo et al. (2011) stated that Tween® 80 promoted a strong decrease in carbon 

dioxide mass transfer coefficient to liquid at low gas flow rate in a bubble column but increased 

gas holdup and bubble interfacial area. 

 

III.3 –Stirred Tank Reactor Fundamentals 

Stirred Tank Reactors or Stirred Tank Bioreactors (STR) are a standard reactor in chemical 

industry due to its low installation and operational costs (OLDSHUE, 1983). It is present in a 

variety of processes, such as fermentations, wastewater treatment and dissolution. Besides, a well-

mixed state can be easily achieved, which offers substrate contact, pH and temperature controls, 

removal of toxic by-products, uniforms cell distribution and more (HOFFMAN et al., 2008). 

Usually, STRs are made of stainless steel or glass. Although most STR have cylindrical shape with 

flat bottom, other designs are possible including conical, dished and curved bottoms (OLDSHUE, 

1983).  

Multiphase bioreactors are a reality in fermentation industry, although mass transfer in 

these systems can be complicated. According to Oldshue (1997), mixing systems for gas-liquid 

reactors should have two processes, dispersion and absorption.  Dispersion is not a critical system 

constraint and will be achieved if the entire bioreactor volume is used to mix gas into the liquid 

(OLDSHUE, 1997). However, the adsorption process can be tough due to gas low solubility in 

liquid, which is the case for carbon monoxide and oxygen in water or culture media (BREDWELL 
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and WORDEN, 1998; BREDWELL et al., 1999; KLASSON et al., 1991; WORDEN and 

BREDWELL, 1998).  

Concerning stirred tank flow regimes, superficial gas flow regime influences directly gas-

liquid mass transfer through gas-filled cavities and gas holdup. Gas holdup is the volumetric 

fraction occupied by the gas phase in the total volume of a two or three phase mixture. The impeller 

sweeping action creates a low pressure void that is filled with sparged gas. These cavities filled 

with gas are a mechanism responsible for gas dispersion and gassed power reduction, influencing 

impeller loading, gas dispersion and liquid recirculation and creating a specific flow regime. A 

turbulent flow would force the gas to break away from the cavity and exit impeller zone, flowing 

through the liquid fluid (KADIC and HEINDEL, 2014). 

 

III.3.1 – Impeller design 

Fluid mixing is extremely important in fermentation process and many impellers have been 

developed in order to optimize this process in terms of energy and mass transfer. Impellers are 

responsible for mechanical agitation, gas dispersion and bubble breakage in gas-dispersed STRs 

(KADIC and HEIDEL, 2014). Propellers, turbines (radial flow, axial flow, flat blade and disc 

turbine) and paddles are the three most common impellers used for low viscosity Newtonian fluid 

(OGUT and HATCH, 1988; OLDSHUE, 1997). Propellers usually operates in faster speed than 

turbines and standard three bladed propeller has poor gas-liquid dispersion, while paddles operate 

in lower speed than turbines (OLDSHUE, 1997). 

The most common impeller classification is by flow leaving impeller zone, which can be 

radial or axial. Fluid dispersion in radial flow impeller occurs in radial direction while in axial 

flow impellers it flow along the rotating shaft (KADIC and HEINDEL, 2014; OLDSHUE, 1997).  



12 

Some examples of radial flow impellers are Narcissus impeller (NS), concave blade disc turbine 

(Chemineer, Smith – present work), SABA 6SRGT and Rushton type turbine (present work) 

(COOKE and HEGGS, 2005; KADIC and HEINDEL, 2014; UNGERMAN and HEINDEL, 

2007). Same example of axial flow impellers are Lightnin A-310, Lightnin A-315, pitched blade 

turbine and more (COOKE and HEGGS, 2005; KADIC and HEINDEL, 2014; UNGERMAN and 

HEINDEL, 2007). This review will focus on radial flow impellers due to its importance to the 

present dissertation. 

There are three stable cavity groups created by radial flow impeller, which are illustrated 

in Figure III.3. A vortex cavity (i) is formed at constant impeller speed and small gas flow rates, 

and is defined by two rolling vortices flowing at the top and at the bottom of the blade. Increasing 

gas flow rate will form clinging cavities (ii) and further increase will lead to large cavities (iii). 

The first has a gas flow clinging to the blade backside still producing vortices at the gas end, while 

the second is larger, smooth (DORAN, 2013; KADIC and HEINDEL, 2014; 

WARMOESKERKEN et al., 1984). 

 

Figure III.3 Cavity formation in a radial flow impeller at constant agitation speed but gas flow rate increase; where 

(i), (ii) and (iii) represent the vortex, clinging and large cavities, respectively (adapted from WARMOESKERKEN 

et al., 1984). 

Although it is logical to think that increasing gas flow rate and impeller agitation speed 

would benefit gas-liquid mass transfer, there is a turning point. Large cavities can sustain a higher 
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gas dispersion rate but when a large cavity becomes too large it hampers gas liquid mass transfer 

decreasing gas dispersion (KADIC and HEINDEL, 2014). This can also impact energy transfer 

efficiency. Although cavities reduce energy transfer between impeller and liquid due to higher 

superficial gas velocity, too much gas and too large cavities would reduce energy transmission and 

hamper mixing (OGUT and HATCH, 1988). 

Considering a Rushton-type turbine, a change in the cavity structure would affect directly 

mass transfer, and not all cavity structures are considered the best for gas-liquid mass transfer. 

Even if vortex and clinging cavities are good for energy transfer, gas dispersion is lower comparing 

to other cavities (KADIC and HEINDEL, 2014). As gas flow is increased, a “3-3 structure”  

(illustrated in Figure III.4) is formed, which is a cavity structure between clinging and large cavity 

and is important for gas-liquid mass transfer especially due to  its stability and gas-handling 

capacity offering optimal gas dispersion at lower power input (high superficial gas velocity) 

(DORAN, 2013). Further increasing gas flow rate would be inefficient, leading to impeller 

flooding, forming an unstable ragged cavity which affects gas dispersion and can even lead to 

power drawn variation in the impeller, which could damage the motor and gearbox system 

(KADIC and HEINDEL, 2014; NIENOW et al., 1977). 

 

Figure III.4 Radial flow impeller scheme forming a ‘3-3’ structure with 3 clinging and 3 large cavities (a) and with 

large cavities (b). 
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Nienow et al. (1977) defined five bulk flow regimes for a single radial flow impeller, 

observing its influence in gas dispersion and bulk flow regime. Figure III.5 graphically illustrate 

the following explanation. At constant gas flow rate, it was observed that increasing impeller speed 

would increase gas dispersion up to a certain point where gas would become entrapped due to high 

turbulence and circulation and recirculation loops (Figure III.5-E). At low agitation speed, power 

input is very small and gas dispersion is negligible (Figure III.5-A) and, therefore, impeller type, 

location or separation are not relevant for the reactor hydrodynamics or mass transfer 

(NISHIKAWA et al., 1984). Consequently, it can be said that at these conditions, mixing in STR 

would approximate to a bubble column because the mixing is dominated by the sparged gas 

(KADIC and HEINDEL, 2014). According to Jade et al. (2006), flow regime transitions occur 

between three phases: flooding (Figure III.5-B), loading (Figure III.5-C) and fully dispersed 

(Figure III.5-D). The best operation phase for gas-liquid mass transfer would be after fully 

dispersed but impeller speed should not be too high in order to avoid recirculation loops (KADIC 

and HEINDEL, 2014). 

 

Figure III.5 Bulk flow regimes for a single radial flow impeller in a gas-liquid system (adapted from KADIC and 

HEINDEL, 2014). 
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Not only hydrodynamics phenomena are important in order to choose an impeller that 

would fit properly the process in mind. It is essential to correlate impeller selection with reactor 

geometry (UNGERMAN and HEINDEL, 2007). Figure III.6 illustrate STR measurements for the 

following explanation. Impeller to tank diameter (Di/T) is typically between 1/4 and 2/3 and 

standardly 1/3, a configuration that minimizes cost while providing well-mixed state for liquid 

phase and complete gas dispersion (BORZANI et al., 2001; KADIC and HEINDEL, 2014). 

Impeller power draw is proportional to impeller speed to third power (N3) and impeller diameter 

to the fifth power (Di
3), which means it is cheaper to operate at higher speed than higher diameter 

concerning gas dispersion or mixing (KADIC and HEINDEL, 2014). Impeller clearance, which is 

the distance between impeller and tank bottom (Hi), should be between T/6 and T/2 depending on 

liquid viscosity, impeller type, sparger-impeller separation, and number of impellers (COOKE and 

HEGGS, 2005; KADIC and HEINDEL, 2014).    

 

Figure III.6 Schematic Stirred Tank Bioreactor representing tank diameter (T), liquid height in vessel (HL), impeller 

speed (N), impeller width (wi), distance from the tank bottom (Hi), impeller diameter (Di) and clearance between top 

and bottom impellers (ID). 
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Concerning gas-liquid mass transfer, Rushton-type turbines are the most used for gas-

liquid dispersion because it has good mass transfer characteristics due to its good breakup and gas 

dispersion capabilities (CABARET et al., 2008). Its high power number produces a higher 

maximum shear zone near turbines producing smaller bubbles, which increases gas mass transfer 

(KADIC and HEINDEL, 2014). However, this same reason is a disadvantage to mixing purposes.  

Moreover, Rushton-type turbines present a power draw drop of 50-65% upon gassing, 

which increases operational and maintenances costs. An alternative is to use concave blades disc 

turbines (such as CD6 Smith), which have smoother power curves and less variation in power draw 

drop upon gassing (UNGERMAN and HEINDEL, 2007). Also, concave turbines can handle more 

gas than Rushton-type turbines before flooding, improving gas-liquid dispersion, and have similar 

mass transfer (SMITH et al., 1977). Comparing to Rushton-type impellers, axial flow impeller 

have a much lower power number, which is ideal for mixing and represents lower cost. However, 

axial flow impellers have lower mass transfer (KADIC and HEINDEL, 2014). 

Depending on the impeller there can be some disadvantages, either in mass transfer or 

mixing or even power draw drop. A single impeller may not provide proper agitation and gas 

dispersion in large reactors, and large cavities on the back of single impellers limit the amount of 

gas that can be properly dispersed (DORAN, 2013; KADIC and HEINDEL, 2014; NIENOW et 

al., 1977; OGUT and HATCH, 1988). Multiple impeller systems, which are preferred for viscous 

or non-Newtonian fluids, can also distribute energy throughout reactor more efficiently, proving 

homogenous shear rate distribution. This impeller configuration can also improve liquid 

recirculation and gas dispersion providing large gas-phase residence times (KADIC and 

HEINDEL, 2014; UNGERMAN and HEINDEL, 2007). 
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In order for most multiple impeller systems to work properly, impellers should have a 

bottom clearance of T/4 to T/3 and the distance between impellers should be at least 1 Di (KADIC 

and HEINDEL, 2014; UNGERMAN and HEINDEL, 2007). Nishikawa et al. (1984) acquire a 

74% increase in kLa using a second Rushton-type impeller stating that the incorrect position of 

impellers could limit mass transfer increase and lead to an inefficient operation without enhancing 

efficiency and increasing cost. Interference also impacts power draw which can decrease up to 

70% of its initial value and remain at this level throughout the process (KADIC and HEINDEL, 

2014). 

Moucha et al. (2003) analysed different mixed impeller configurations in terms of power 

density (W/m3) and kLa (s-1) for low viscosity Newtonian fluid using Techmix 335 up pumping 

(axial), Techmix 335 down pumping (axial), pitched blade impeller down pumping (axial) and 

Rushton-type turbine (radial). Although the highest kLa was observed using a combination of two 

or three Rushton-type turbines, its power concentration was also elevated. A mixed configuration 

of axial and radial impellers seemed more efficient for gas dispersion and mixing because its 

efficiency was considered by maximizing gas-liquid mass transfer at minimized power input 

(MOUCHA et al., 2003). According to Kadic and Heindel (2014) is usually better to use a 

Rushton-type or concave blade turbine on the bottom in order to achieve optimal bubble breakage, 

and a down-pumping axial flow impeller at the top to enhance gas liquid circulation. 

 

III.3.2 – Power measurements 

As stated by Kadic and Heindel (2014), power dissipation has a direct impact on gas-liquid 

mass transfer in STRs since its increase leads to bubble diameter decrease and bubble interfacial 

surface area increase. Moreover, an equilibrium in coalescence is reached because as bubbles break 
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apart due to a higher power density overcoming the surface tension force, its power density also 

increases the collision force, bringing the bubbles together. There are four main techniques to 

measure power consumption in STRs: electric, calorimetric, torque and strain measurements 

(KADIC and HEINDEL, 2014). 

The turbine power capacity depends on impeller type, impeller diameter, impeller speed, 

tank diameter, tank liquid height, liquid physical properties (density, viscosity) and many other 

factors (BORZANI et al., 2001). Rushton et al. (1950a,b) proposed a dimensionless strategy to 

determine turbine power capacity in which the ungassed power number was related to Reynolds 

number, Froude number, liquid height to impeller diameter ratio, tank to impeller diameter ratio 

and more. Rushton et al. (1950a,b) conducted many experiments with different impellers, 

correlating ungassed power number with Reynolds number. 

Power consumption is an important parameter in STR’s hydrodynamics and is quantified 

through two dimensionless numbers, the ungassed and gassed power numbers. The ungassed 

power number (Npo) is analogous to the friction factor in pipe flow and represents the ratio of the 

pressure differences producing low to inertial forces. The gassed power number (Np) represents 

the ratio of the pressure differences producing flow to the inertial forces of gas-liquid dispersion 

and therefore measure power requirements for impellers in gas-liquid systems. Agitator flow 

number (NQ) is a dimensionless number that represents the discharge coefficient used to define the 

volumetric flow from the impeller blade related to impeller speed and diameter (BORZANI et al., 

2001; COOKE and HEGGS, 2005; KADIC and HEINDEL, 2014; OHYAMA and ENDOH, 

1955). All mathematical relationship explained for Npo, Np and NQ are listed in Equations (1) to 

(3). Ohyama and Endoh (1955) defined the agitator flow number in order to better study the 

influence of aeration in system density drop, which leads to a power drop related to ungassed 
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systems. Therefore, graphs were proposed to correlate a ratio of impeller power input in liquid 

without sparged gas and with sparged gas (P/Po) with an agitator flow number (NQ) for various 

impellers configuration. 

𝑁𝑝𝑜 =
𝑃𝑜

𝜌𝑁3𝐷𝑖
5 (1) 

𝑁𝑝 =
𝑃

𝜌𝑁3𝐷𝑖
5 (2) 

𝑁𝑄 =
𝑄𝐿

𝑁𝐷𝑖

 (3) 

Where, Npo is the ungassed power number; Po is the impeller power input in to liquid without 

sparged gas; ρ is the fluid density; N is the impeller speed; Di is the impeller diameter; Np is the 

gassed power number; P is the impeller power input into the liquid when gas is sparged in the tank; 

NQ is the agitator flow number; QL is the gas volumetric flow. 

 

III.4 – Gas-Liquid Mass Transfer 

For micro-organisms to convert the gaseous substrate into biochemicals, it is important that 

the nutrient is internalized by the cell. However, according to Christi (1989), transfer from gas 

bulk to micro-organism cytoplasm must occur in a certain pathway, and this route have eight 

resistances. Figure III.7 illustrates this route and resistances, which are present in the gas stagnant 

film inside bubble (1), at the gas-liquid interface (2), in the liquid stagnant film near gas-liquid 

interface (3), in the liquid bulk (4), in the liquid stagnant film closer to the cell surface (5), at the 

liquid-cell surface (6), in the cell cytoplasm (7) and at the site of the biochemical reaction (8) 

(BORZANI et al., 2001). Although mass transfer can present many resistances, most of them may 

be neglected in most bioreactors except for the resistance near the gas-liquid interface, which is a 

function of oxygen diffusivity in the liquid phase as well as the film thickness (BORZANI et al., 

2001; KADIC and HEINDEL, 2014). 
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Figure III.7 Illustration of gas route to micro-organism presenting all eight mass transfer resistances, where A is the 

gas bubble, B is the gas-liquid interface, C are the stagnant films, D is the cell and E is the site of the biochemical 

reaction. Numbers 1 to 8 represent the resistances. Adapted from BORZANI et al. (2001). 

 

The first resistance is present in the gas stagnant film where the gas will diffuse and can be 

neglected due to the intense movement of gas molecules. The gas-liquid interface resistance (2) 

will increase if some substance would adhere in the surface, like antifoams. Therefore, most of the 

time, the second resistance is also neglected. If the liquid is well-mixed (turbulent flow) and fluid 

is non-viscous, the convective flow will occur and the fourth resistance can be neglected. 

Concerning the resistances close to the cell, all four (5 to 8) can be neglected since cells are very 

small and, consequently, have a higher superficial area, which would be exposed to the liquid and 

resistance in the liquid stagnant film (5) would be negligible. Moreover, cell surface should not 

oppose to the gas permeation due to diffusive flow to cell interior and cell size being very small 

comparing to the gas in its exterior. Considering bacteria cells, the metabolic reactions occurs in 

the cytoplasm, and therefore a resistance in the cytoplasm would not be considered (BORZANI et 

al., 2001).  
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Considering a gas bubble immersed in a liquid, it can be considered that two stagnant films 

are present in both sides of the gas-liquid interface. At the gaseous stagnant film, mass transfer 

resistance is given by (1/kg), while at the liquid stagnant film mass transfer resistance is given by 

(1/kL). The mass flow in both stagnant films will also depend on partial pressure gradient (gas 

phase) and gas concentration in liquid (liquid phase). Since resistance at gaseous stagnant film can 

be neglected, the overall volumetric mass transfer coefficient will be given by kL (BORZANI et 

al., 2001). The specific gas-liquid interfacial area is responsible for modulating this coefficient, 

and as the driving force is the gas concentration gradient, a model for gas-liquid mass transfer is 

represented in Equation (4). However, since is very difficult to measure kL or a independently, 

most works choose to report the product kLa, known as the overall volumetric mass transfer 

coefficient and has units of T-1 (h-1, s-1) (KADIC and HEINDEL, 2014). 

𝑑𝐶

𝑑𝑡
= 𝑘𝐿𝑎 ∙ (𝐶∗ − 𝐶) (4) 

Where, C* is the carbon monoxide steady-state concentration; C is the liquid phase carbon 

monoxide concentration; t is time; and kLa is the overall volumetric mass transfer coefficient. 

 

Therefore, considering that the gas adsorption in the liquid phase is a limiting step for gas-

liquid mass transfer, improving the overall volumetric mass transfer coefficient (kLa) would 

increase gas mass transfer to liquid (KADIC and HEINDEL, 2014). Consequently, productivity 

would increase in systems where gas is priority for production (as a substrate or final electron 

acceptor). In this way, most works about synthesis gas fermentation have been improving kLa using 

different reactor configurations or gas mixtures or even gas flow rates and agitation speeds in order 

to improve bioproduct formation and process commercialization (MUNASINGHE and KHANAL, 

2012; RIGGS and HEINDEL, 2006; SHEN et al., 2014; UNGERMAN and HEINDEL, 2007). 
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However, how to measure gas concentration in the liquid phase? For dissolved oxygen 

measurement, several techniques have been proposed such as chemical, volumetric, tubing, optode 

and electrochemical electrode methods (KADIC and HEINDEL, 2014). Measurements for 

dissolved carbon monoxide (CO) are more complicated due to the absence of probes to measure 

CO concentrations (KADIC and HEINDEL, 2014). Moreover, the low solubility of the gas in 

water increases the uncertainty of the measure (RIGGS and HEINDEL, 2006). Measurement of 

CO concentration can be done by using gas chromatography (GC) or a myoglobin bioassay, which 

is based in the reversible bound between CO and the protein (KADIC and HEINDEL, 2014; 

KUNDU et al., 2003). Myoglobin’s binding site consists of only one porphyrin containing iron(II) 

known as heme, differently from hemoglobin, which has four (LIM et al., 1995). Therefore, each 

myoglobin bounds to one molecule of carbon monoxide. The bioassay is a simpler, faster and 

cheaper method when comparing to GC and results were comparable between the two methods 

(MUNASINGHE and KHANAL, 2014).  

Table III.1 summarizes some overall volumetric mass transfer coefficient present in 

literature for carbon monoxide transfer in water. For the past years, different bioreactor 

configurations such as stirred tank reactor with microbubble sparger, hollow fiber membrane 

reactors and bubble columns were considered in order to enhance mass transfer in synthesis gas 

fermentation. Shen et al. (2014a) achieved a kLa of 1096.2 h-1 operating a hollow fiber membrane 

bioreactor (HFMBR), which consisted of a hollow fiber membrane contactor connected to an 8L 

working volume reservoir. HFMBR homogenization was performed by water recirculation (1.14 

cm/s) and specific gas flow rate used was 0.625 vvm. So far, this is the highest mass transfer 

coefficient for carbon monoxide in water present in literature. 
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Table III.1 Carbon monoxide overall volumetric mass transfer coefficient for different reactors and hydrodynamics. 

Reactor 
N 

(rpm) 

QCO 

(vvm) 
Microorganism Gas 

kLa 

(h-1) 
Ref. 

BCR n/a 0.4 n/a CO 72.0 (8) 

CHF n/a n/a n/a CO 85.7 – 946.6 (7) 

CSTR 300 n/a C. ljungdahlii CO 14.9 (4) 

CSTR 400 n/a C. ljungdahlii CO 21.5 (4) 

CSTR 400 0 – 0.32 n/a Syngas 38.0 (9) 

CSTR 500 n/a C. ljungdahlii CO 22.8 (4) 

CSTR 600 n/a C. ljungdahlii CO 23.8 (4) 

CSTR 700 n/a C. ljungdahlii CO 35.5 (4) 

GLR n/a 1.67 n/a CO 129.6 (12) 

HFMBR n/a 0.625 n/a CO 1096.2 (5) 

HFMBR n/a 0.029 n/a CO 385.0 (10) 

MBR n/a 
0.00625 – 

0.0625 
n/a Syngas 450.0 (7) 

PBC with 

microbubble 

sparger 

n/a 0 – 0.021 R. rubrum  Syngas 2.1 for CO (1) 

STR 300 0 – 0.032 C. ljungdahlii Syngas 35.0  for CO (1) 

STR 300 0 – 0.032 R. rubrum Syngas 28.1 for CO (1) 

STR 300 0 – 0.032 SBR mixed culture Syngas 31.0 for CO (1) 

STR 400 0.14 – 0.86 n/a CO 10.8 – 155.0 (2) 

STR 400 0.70 – 2.14 n/a CO 72.0 – 153.0 (3) 

STR 400 0.36 – 1.07 n/a CO 72.0 – 122.4 (11) 

STR 400 0 – 0.032 R. rubrum  Syngas 101.0 for CO (1) 

STR 450 0 – 0.032 R. rubrum Syngas 101.0 for CO (1) 

STR 500 0.36 – 1.07 n/a CO 129.6 – 144.0 (11) 

STR 600 0.36 – 1.07 n/a CO 147.6 – 208.8 (11) 

STR 650 0.36 – 1.07 n/a CO 172.8 – 252.0 (11) 

STR 700 0.36 – 1.07 n/a CO 187.2 – 288.0 (11) 

STR with 

microbubble 

sparger 

300 n/a SBR mixed culture Syngas 104.0 for CO (1) 

TBR n/a 0 – 0.021 n/a Syngas 22.0 (9) 

TBR n/a 0 – 0.021 C. ljungdahlii Syngas 137.0 for CO (1) 

TBR n/a 0 – 0.021 R. rubrum Syngas 55.5 for CO (1) 

TBR n/a 0 – 0.021 SBR mixed culture Syngas 121 for CO (1) 
Where, n/a – not applicable; SBR – Sulfate reducing bacteria; N – impeller speed; QCO – specific gas flow 

rate; kLa – overall volumetric mass transfer coefficient; BCR – Bubble Column Reactor; STR – Stirred 

Tank Bioreactor; CSTR – Continuous Stirred Tank Bioreactor; HFMBR – Hollow Fiber Membrane 

Bioreactor; CHF – Composite Hollow Fiber Membrane; MBR – Membrane Bioreactor; PBC – Packed 

Bubble Column; TBR – Trickle Bed Reactor/ GLR – Gas-Lift Reactor. References are Bredwell et al. 

(1999), 1; Riggs and Heindel (2006), 2; Ungerman and Heindel (2007), 3; Klasson et al. (1993), 4; Shen et 
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al. (2014a), 5; Shen et al., (2014b), 6; Munasinghe and Khanal (2012), 7; Chang et al. (2001), 8; Cowger et 

al. (1992), 9; Lee et al. (2012), 10; Kapic et al. (2006), 11; Munasinghe and Khanal (2014), 12. 

 

Bredwell et al. (1999) determined carbon monoxide and hydrogen gas mass transfer to 

liquid phase in three different fermentations using synthesis gas as gaseous substrate. The work 

also compared different reactor configuration such as stirred tank reactor (STR), stirred tank 

reactor (STR) with microbubble sparger, packed bubble column (PBC) with microbubble sparger, 

and trickle bed reactor (TBR). Synthesis gas were fermented by acetogenic bacteria Clostridium 

ljungdahlii; by a triculture composed of Rhodospirillum rubrum and two methanogenic bacteria 

Methanobacterium formicum and Methanosarcina barkeri; and by a sulfate-reducing bacteria 

mixed culture (SBR). The results for carbon monoxide mass transfer are gathered in Table III.1. It 

is possible to understand that reactor configuration is extremely important for mass transfer in gas-

liquid systems, especially due to hydrodynamic change in the bioreactor (KADIC and HEINDEL, 

2014; OLDSHUE, 1997). The addition of a microbubble sparger in the fermentation conducted by 

SBR mixed culture at 300 rpm promoted a 3.7 time increase in kLa for carbon monoxide. The use 

of a TBR instead of a STR in a fermentation using C. ljungdalii also increased kLa significantly (4 

time increase). 

 Most of experiments concerning carbon monoxide concentration implemented the bioassay 

developed by Kundu et al. (2003) in order to measure CO concentration at the liquid phase. The 

assay is based in the affinity between CO and myoglobin forming a carboxy-myoglobin complex, 

which is detected in spectrophotometer (KADIC and HEINDEL, 2014). Works presented in Table 

III.1, except for Bredwell et al. (1999), Klasson et al. (1993), Cowger et al. (1992) and Chang et 

al. (2001), determined carbon monoxide concentration in tap water (at 25 ºC) using myoglobin 

bioassay.  
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 Klasson et al. (1993) used the same method developed by Cowger et al. (1992) to determine 

kLa in TBR and STR systems based in the carbon monoxide consumption and mass balance, which 

is similar to the one used by Bredwell et al. (1999). Chang et al. (2001) measured carbon monoxide 

and carbon dioxide concentration at liquid phase using gas chromatography (GC). Munasinghe 

and Khanal (2014) evaluated hydrogen and carbon monoxide mass transfer comparing myoglobin 

bioassay technique with gas chromatography determination. It was confirmed that myoglobin-

protein bioassay can be used as a reliable method to determine carbon monoxide kLa in synthesis 

gas fermentation studies. Moreover, the method is much simpler, faster and cheaper when 

comparing to GC (MUNASINGHE and KHANAL, 2014). 

Comparing to Bredwell et al. (1999) and Klasson et al. (1993), kLa obtained in systems 

without microorganism are higher. Microbial cells offer an additional resistance to mass transfer, 

which impacts especially membrane bioreactors where a biofilm surface is formed during 

fermentation (MUNASINGHE and KHANAL, 2010). In recent articles, kLa is determine 

separately from fermentation, using only tap water and a pure gas or syngas mixture, even when 

CO concentration was measured using GC (MUNASINGHE and KHANAL, 2012; 

MUNASINGHE and KHANAL, 2014; RIGGS and HEINDEL, 2006; SHEN et al., 2014a; SHEN 

et al., 2014b; UNGERMAN and HEINDEL, 2007).  Therefore, Equation (4) can be used in the 

absence of micro-organisms at liquid phase, which implies that the only resistance to mass transfer 

is present at the stagnant liquid film (BORZANI et al., 2001; CHRISTI, 1989; KADIC and 

HEINDEL, 2014) 
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III.5 – Parameter Estimation 

Mathematical model is a structure that aims to describe real-life phenomena based on 

experimental observation. It stablishes a relationship between independent variables (𝑥 ∈ 𝑋 ⊑

ℝ𝑁𝑋) and dependent variables (𝑦 ∈ 𝑌 ⊑ ℝ𝑁𝑌) in order to explain the system’s behaviour. The 

model structure also contains parameters (𝜃 ∈Θ ⊑ ℝ𝑁𝑃), which are constant values that 

contains inherent properties of the process or problem nature (ALBERTON, 2013). Most of the 

time, parameters cannot be measured and have to be estimated through experimental data. This 

process is called Parameter Estimation and is based on adjusting parameter values so the dependent 

variables predicted through the model are as close as possible to experimental data, considering 

measurement uncertainty. This adjustment is conducted by an objective function, which measures 

the distance between experimental values and predicted values. The parameter is obtained by 

optimizing this objective function (ALBERTON, 2013; SCHWAAB and PINTO, 2007) 

Experimental deviations in procedures like sampling and dilution lead at some extent to 

uncertainties in the experimental data acquired. Therefore, it is important to proper characterize 

this uncertainty in order to evaluate the final result in statistical terms (SCHWAAB et al., 2008). 

In this way, parameter estimation is very important and can be divided in three steps (SCHWAAB 

and PINTO, 2007):  

1) Definition of an objective function. 

2) Optimization of this objective function in order to find and optimum point (minimum 

or maximum depending on the problem). Usually, numerical techniques are required 

for this step. 

3) Precise statistical interpretation of the parameter values estimated and the model 

prediction quality using these parameters. 
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These steps will be discussed briefly in the following sections. Important algorithm and 

functions will be detailed in Chapter IV. For more details about parameter estimation and 

optimization methods works from Schwaab (2005), Schwaab and Pinto (2007) and Schwaab et al. 

(2008) are suggested. 

 

III.5.1 – Defining an objective function 

In order to introduce the idea of distance or proximity between predicted and experimental 

values, it is necessary to define a metric, the objective function, which can be challenging. A 

distance function is defined as a positive real number and in order to be used as an objective 

function it needs to have statistical significance. Therefore, two hypotheses must be made: that the 

model is perfect and that the experiment was well performed. The first assumes that the model 

structure is correct and that any eventual deviation between experimental data and predicted value 

is due only and exclusively to experimental uncertainty. The second assumes that measurement 

deviation is so small that it is possible to admit that the probability to find experimental data is 

maximum (SCHWAAB and PINTO, 2007). 

Although least squares is the most common choice for objective function, this method is 

very limited because it admits all variables can be obtained with same precision in any 

experimental condition (ALBERTON, 2013). However, measurement deviations can occur at any 

time during experiments and experimental measurement are not necessarily independent. 

Maximum likelihood estimation (MLE) is another common way to estimate parameters and is a 

method based on very simple premises allowing a strict analysis of any experimental problem 

(SCHWAAB and PINTO, 2007). These premises are admitting that experimental uncertainty 
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distribution is known; and admitting that perfect model hypothesis and well performed experiment 

hypothesis are valid (ALBERTON, 2013; SCHWAAB and PINTO, 2007).  

According to the maximum likelihood principle (detailed in SCHWAAB and PINTO, 

2007), assuming that variables have a normal probability distribution and are not correlated, and 

that independent variables are deviation-free, objective function can be described mathematically 

as in Equation (5) (SCHWAAB and PINTO, 2007). Parameter reliability is directly influenced by 

experimental accuracy and precision, therefore a suitable definition of the experimental 

uncertainties is highly desirable (ALBERTON, 2013). 

𝐹𝑜𝑏𝑗 = ∑ ∑
(𝑦𝑖,𝑗

𝑒 − 𝑦𝑖,𝑗
𝑚(𝑥𝑖 , 𝜃))2

𝜎𝑦𝑖,𝑗
2

𝑁𝑌

𝑗=1

𝑁𝐸

𝑖=1

 (5) 

Where, FObj represents the objective function; NE the number of experiments; NY the number of 

dependent variables; x the independent variables; θ the parameters; ye are the experimental values 

and ym are the predicted values; and 𝜎𝑦𝑖,𝑗

2  experimental variance. 

 

III.5.2 – Defining an optimization strategy 

The optimization strategy depends on the model chosen for the parameter estimation. If the 

model is linear, minimization will have analytical solutions. If the model is linear and assuming a 

normal distribution for deviations between predicted and experimental values, confidence region 

for the estimated parameter will be a hyper-ellipsoid in a parametric space with a centre point 

representing the estimated parameter (DRAPER and SMITH, 1998; SCHWAAB and PINTO, 

2007).  However, when a model is non-linear, iterative processes are needed to minimize the 

objective function and to obtain the confidence region. For this minimization it is important to 
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consider the parameter space size, the existence of a local minima, the continuity of the objective 

function and the sensitivity of the objective function for each model parameters (HIBBERT, 1993). 

Many methods can be used in order to optimize the objective function but most are based 

on derivatives, a deterministic method in which minimization is performed along a direction that 

combines gradient vector (𝜕𝐹𝑂𝑏𝑗 𝜕𝜃⁄ ) and Hessian matrix (𝜕2𝐹𝑂𝑏𝑗 𝜕𝜃2⁄ ). Direct search methods 

are based only on calculating the objective function without derivatives (SCHWAAB et al., 2008). 

However, derivative methods are preferred because convergence velocity and reliability are better 

than direct search (BARD, 1974). Both methods may be known as search methods since both 

searches starts from an initial parameter guess and optimization evolves to a minimum 

(SCHWAAB et al., 2008). 

However, not all parameter estimation run smoothly and some minimization can lead to 

numerical problems associated with a large number of model parameters, high model parameter 

correlation and multimodal nature of the objective function (SCHWAAB et al., 2008). Non-

deterministic methods, such as Genetic Algorithm – GA (GOLBERG, 1989), Simulated Annealing 

– SA (KIRKPATRICK et al., 1983) and Particle Swarm Optimization – PSO (KENNEDY and 

EBERHART, 1995), can overcome these numerical problems. 

Non-deterministic optimization methods are methods bases on empirical evolutionary rules 

that frequently mimic successful optimization strategies found in nature. They are characterized 

by a large number of function evaluations and a random search character, which assumes high 

probability of finding a global minima (SCHWAAB and PINTO, 2007). Usually, these methods 

are flexible and can be used for many objective functions and constraints. Also they can be 

implemented in problems that have many model parameters. Moreover, non-deterministic methods 

are not sensitive to initial guess parameter, do not need objective function derivatives and can 



30 

perform global optimization through extensive calculation of objective functions in the parametric 

space (SCHWAAB et al., 2008). According to Schwaab (2005), as a non-deterministic method, 

PSO allow an improved parameter estimation performance with less computational effort when 

compared to GA and SA. 

Particle Swarm Optimization method is based on swarm behaviour and was proposed by 

Kennedy and Eberhart (1995). Each individual of the swarm (particle) remembers the best solution 

found by itself and by the whole swarm along the search path. Particles will move along the search 

and exchange information with other particles. The algorithm will be detailed in Chapter IV. The 

method is conducted in two stages: exploration and exploitation. Exploration stage is characterized 

by the random search in which particles conduct a global search over the searching area. 

Exploitation stage is characterized by concentrating the search around the more promising regions, 

leading to an improvement in solution. Therefore, a proper balance between both stages is 

fundamental to guarantee the search success and finding a minimal value for the objective function. 

The main disadvantage of PSO is the high number of objective functions evaluations, which may 

require longer computational times (SCHWAAB et al., 2008). 

It is also possible to combine derivative-based methods with non-deterministic 

optimization methods. This approach usually starts with the non-deterministic optimization 

method in order to search the parametric space globally and obtain a good estimative for 

parameters values. Then, a deterministic method is performed (derivative-based, for example 

Newton-Raphson) which accelerate final convergence and allows parameter estimation with high 

accuracy (SCHWAAB and PINTO, 2007). 
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III.5.3 – Statistical interpretation of estimated values 

After minimizing the objective function, statistical analysis of the values obtained is 

necessary in order to achieve valid and high quality results. This step would depend on the 

objective function and optimization method used for parameter estimation. As stated before, this 

step is important, especially due to experimental uncertainty that are included in the estimated 

parameter. 

Experimental uncertainty is represented by the experimental covariance. However, this 

matrix can be partially or totally unknown (ROMAGNOLI and SÁNCHEZ, 1999). Therefore, it 

is assumed that experimental uncertainties are independent, so experimental covariance matrix is 

diagonal and its elements are originated from the experimental variance matrix. Equations (6) to 

(8) result in experimental covariance and mean for NE experiments considering two variables xi 

and xj ∈ 𝑋 ⊆ ℝ𝑁𝑋. 

𝜇𝑥 =  
1

𝑁𝐸
∑ 𝑥𝑘

𝑁𝐸

𝑘=1

 (6) 

𝜐𝑥𝑖,𝑥𝑗 =
1

(𝑁𝐸 − 1)
∑(𝑥𝑖,𝑘 − 𝜇𝑥,𝑖)(

𝑁𝐸

𝑘=1

𝑥𝑗,𝑘 − 𝜇𝑥,𝑗) (7) 

𝑉𝑥 = [𝜈𝑥𝑖, 𝜈𝑥𝑖] (8) 

Where, µx is the mean value for variables; NE is the number of experiments; υxi and υxj are 

variances for xi and xj, respectively; Vx is the covariance matrix. 

It is important to understand that if uncertainties are dependent values this can lead to a 

bad conditioned covariance matrix due to singularity proximity and it means the matrix cannot be 

inverted. This matter is extremely sensible when the inverted covariance matrix is used to analyse 

variables in the objective function and parametric uncertainty. This leads to problems in 
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minimizing objective function and parameters with estimated values that do not have any physical 

or statistical meaning (SANTOS and PINTO, 1998). 

The quality of the parameter estimated value is evaluated through a parameter covariance 

matrix (Vθ). This matrix is not known accurately because it is based on a limited quantity of 

experimental data that should represent all possible experiments (SCHWAAB, 2007). Covariance 

matrix can be obtained using sensitivity matrix (B) through Equation (9) (BARD, 1974; 

SCHWAAB and PINTO, 2007). 

𝑉𝜃 = (𝐵𝑇𝑉𝑥
−1𝐵)−1 (9) 

Where, Vθ is the parameter covariance matrix; B is the sensitivity matrix (∂X/∂Θ and ∂Y/∂

Θ); and Vx is the experimental covariance matrix. 

Considering there is no deviation in the independent variable, Equation (9) can be reduced 

to Equation (10). Parametric covariance matrix can be inverted in what is called Fisher’s 

Information Matrix (FIM), which the direct use could avoid inversion proceedings. However, 

elements from FIM matrix can provide an inadequate information about parameters due to a 

possible linear dependence between parameters. The parametric covariance matrix is really 

important because it can be used to define confidence interval, significance level and correlation 

between parameters. 

𝑉𝜃 = ((
𝜕𝑌

𝜕Θ
)

𝑇

𝑉𝑦
−1

𝜕𝑌

𝜕Θ
)

−1

 (10) 

Confidence interval can be obtained admitting that parametric uncertainty has normal 

probability distribution as well as experimental uncertainty. Although only valid for linear models, 

it is a good approximation for non-linear model when experimental deviation is low. Therefore, 

assuming a t-student distribution according to the estimation degree of freedom and the confidence 
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level chosen, confidence interval can be determined as Equation (11). In case the parameter 

presents no significance, confidence interval will have positive and negative values, even zero 

(SCHWAAB and PINTO, 2007). 

𝜃′𝑖 − 𝑡 ∙ 𝜎𝜃𝑖 < 𝜃𝑖 < 𝜃′𝑖 + 𝑡 ∙ 𝜎𝜃𝑖 (11) 

Where, θ’i is the parameter estimated value; t is the probability using a t-student distribution for a 

certain degree of freedom and confidence level; and σθi is the parameter standard deviation. 

However, confidence interval does not have any information about parametric correlation, 

which statistically express parameter interaction. Parametric correlation (Equation (12)) express 

how one parameter depends on other parameter values and can cause many problems to parameter 

estimation, such as an inefficiency in minimizing the objective function, resulting in a parameter 

estimated values with low statistical significance (ALBERTON, 2013; SCHWAAB and PINTO, 

2007; WATTS, 1994). It can be caused bad experimental planning and inappropriate model 

structure, which can be avoided using statistical planning and techniques to change the present 

model parameters (ALBERTON, 2013). Nonetheless, sometimes is not possible to avoid 

parametric correlation due to model non-linearity (SCHWAAB, 2007). 

𝜌𝑖𝑗 =
𝜎𝑖𝑗

2

𝜎𝑖𝜎𝑗
 (12) 

Where, ρij is the parametric correlation coefficient; σ2
ij is the covariance matrix; and σi and σj are 

the standard deviations. 

In order to consider the parametric correlation in the statistical analysis of the parameter 

estimated values, a confidence region can be calculated. Since experimental data are only part of 

a phenomenon which has uncertainties, it is not possible to determine a parameter exact value but 

a region of possible parameter values. This is named confidence region, a set of parameter values 

that describe experimental data with some statistic precision (BARD, 1974; SCHWAAB and 
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PINTO, 2007). In order to stablish a confidence region, it can be assumed that parametric 

uncertainty has a normal probability distribution and that a linear approximation for the model is 

considered valid. Confidence regions for linear models tend to have an ellipsoid shape and this can 

also be valid in very restricted cases for non-linear models, which normally have many different 

shapes (SCHWAAB et al., 2008). Three methods are normally used for accurately descriptions of 

confidence regions: profiling t-plot (BATES and WATTS, 1988; WATTS, 1994), lack-of-fit 

method (HALPERIN, 1963; HARTLEY, 1964; WILLIAMS, 1962) and likelihood method 

(BEALE, 1960). Profiling t-plots were designed to calculate confidence interval and an 

interpolation is needed in order to obtain a confidence region. Likelihood method is exact only for 

linear models but confidence region obtained for non-linear models can be close to exact 

depending on the model structure. Exact confidence region can also be obtained with lack-of-fit 

method, however computational effort is higher because it needs model derivatives to work. 

Likelihood is preferred since lack-of-fit and profiling t-plots produces very similar confidence 

regions (SCHWAAB et al., 2008). 

Beale (1960) proposed a mathematical expression, Equation (13), to determine confidence 

regions, which is exact for linear models with experimental deviation following a normal 

probability distribution with a confidence level of (1-α). If model is non-linear and experimental 

deviation follows an arbitrary distribution, the term accounting for Fisher’s distribution is 

substituted by a constant c, which depends on the required confidence level and on the defined 

objective function. 

𝐹𝑂𝑏𝑗(𝜃) ≤ min (𝐹𝑂𝑏𝑗(𝜃)) (1 +
𝑁𝑃

(𝑁𝐸 ∙ 𝑁𝑌 − 𝑁𝑃)
𝐹𝑁𝑃,𝑁𝐸∙𝑁𝑌−𝑁𝑃

(1−𝛼)
) (13) 

Where, FObj(θ) is the objective function at parameter θ; min(FObj(θ)) is the objective function at the 

minimum; NP is number of parameters; NE is the number of experiments; NY is the number of 
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dependent variables; F is the superior limit in Fisher’s distribution given NP and (NE∙NY-NP) 

degrees of freedom considering a confidence level of (1-α). 

Confidence regions obtained through Equation (13) are called likelihood regions and can 

be disjoint and unbounded due to the contours of complex non-linear functions (SCHWAAB et 

al., 2008). For cases such as the present work, when two parameters are being estimated, likelihood 

regions can be determined with standard contouring methods (BATES and WATTS, 1988). For 

more parameters, PSO would facilitate the process because it is required an evaluation of a large 

number of points to produce a satisfactory contour (SCHWAAB et al., 2008). Using Particle 

Swarm Optimization in parameter estimation would allow a high number of objective function 

evaluations. Using the selection expressed in Equation (13), a set of parameters can be properly 

selected and a likelihood confidence region can be determined. The only additional computational 

efforts to PSO algorithm is selecting the points that satisfy Beale’s Equation (13). 

Confidence regions can lead to very good conclusions about estimated parameter values 

and its statistical significance. However this depends on the model linear approximation and, 

therefore, on the objective function quadratic approximation (ALBERTON, 2013). Figure III.8 is 

based on Alberton (2013) and represents some shapes that can appear when parametric uncertainty 

is analysed using a linear model.  

Although Figure III.8 considers a linear model, some visual concepts are very important. 

Region A represents a confidence interval, which broad area states there is no information about 

parametric correlation. Region B and C represents confidence regions with low or absent 

parametric correlation and high parametric correlation, respectively. Regarding confidence region 

in non-linear models, even when experimental deviations are normally distributed sometimes the 

same cannot be said to parameter deviations. Therefore, an elliptical shape confidence region for 
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a non-linear model can be a poor approximation (SCHWAAB et al., 2008). However, elliptical 

approximations for confidence regions are widely used due to its simplicity. Moreover, in this case 

parameter estimated values are assumed to follow normal distribution, so only estimated point and 

covariance matrix are necessary (BARD, 1974). 

 

Figure III.8 Parametric uncertainty shapes for a linear model, showing parametric correlation between parameters θ1 

and θ2. Region A represents a confidence interval; B represents an ellipsoid confidence region; and C a steep 

ellipsoid confidence region (adapted from ALBERTON, 2013). 
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Chapter IV – MATERIALS AND METHODS 

This Chapter resumes all equipment, materials and methods used in order to measure 

carbon monoxide concentration in liquid phase and determining the overall volumetric mass 

transfer coefficient. 

 

IV.1 – Equipment and Software 

Experiments and analysis were conducted using: 

1) Spectrophotometer UV-VIS Shimadzu UV-1800 – Shimadzu; 

2) Software UV Probe 2.43– Shimadzu; 

3) Software MATLAB® version 2015R– MathWords; 

4) Scale Shimadzu ATX224 – Shimadzu; 

5) Polystyrene cuvette, 1,5 ml e optical path 10-mm (340≤λ≤800 nm); 

6) Water purification system, Milli-Q, Simplicity® – Millipore Corporation; 

7) Distillation machine model NT 425 – Novatecnica; 

8) Beaker, glass stirring rod, test tube, automatic pipette and tips; 

9) Laboratory pH meter, model DM 22 – Digimed; 

10) Rubber septum; 

11) Benchtop jacked bioreactor, TEC-BIO-1.5 – Tecnal Scientific Equipments Co.; 

a. Nominal volume: 1.5 L. 

b. Working volume: 750 mL and 1.0 L. 

c. Internal diameter: 9 cm. 

d. Two radial impellers, six bladed, CD6 Smith-type (bottom) and Rushton-type 

(top). Di = 4.4cm; 𝐻𝑖
𝑠𝑚𝑖𝑡ℎ = 4𝑐𝑚; 𝐻𝑖

𝑅𝑢𝑠ℎ𝑡𝑜𝑛 = 11.5𝑐𝑚; ID = 7.5 cm diameter. 

e. Sparger, round, 3.5-cm diameter,8 holes with 0.5-mm diameter each. 
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f. Jacked filled with distilled water; 

g. Temperature probe and control system; 

12) High-performance dispersing instrument – Ika T 25 digital ULTRA-TURRAX®; 

13) Peristaltic pump, model LDP-101-3 – MS TECNOPON Instrumentação; 

14) Rotameter, model FM-1000VIH – Matheson. 

 

IV.2 – Reagents and Solvents 

1) Myoglobin 90% pure obtained from equine heart muscle ref M1882 – Sigma-Aldrich; 

2) Potassium phosphate monobasic(KH2PO4)  – VETEC; 

3) Potassium phosphate dibasic  (K2HPO4) – VETEC; 

4) Potassium hydroxide (KOH) – VETEC; 

5) Phosphoric acid (H3PO4) – ISOFAR; 

6) Sodium dithionite, ref 71699 – Sigma-Aldrich; 

7) Carbon monoxide 99.5% pure – White Martins Gases Industriais ltda.; 

8) TWEEN® 80, ref. 758 – ISOFAR; 

9) Perfluorodecalin, 95% – Apollo Scientific Limited); 

 

IV.3 – Experimental Conditions  

Experimental data for overall volumetric mass transfer coefficient determination was based 

in the conditions described at Table IV.1. Three agitations speed (100, 300 and 500 rpm); two 

temperatures (25 and 37 ºC); two volumes (0.75 and 1.0 L); four gas flow rates (0.5, 1.0, 2.0 and 

2.5 L/min), which resulted in five specific gas flow rates (0.7, 1.3, 2.0, 2.5 and 2.7 vvm); and four 
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compositions of liquid phase (pure distilled water; distilled water + PFC; distilled water + Tween® 

80; and distilled water + PFC + Tween® 80) were tested. 

 

Table IV.1 Experimental conditions for overall volumetric mass transfer coefficient estimation. 

N 

(rpm) 
T (oC) V (L) FCO (L/min) QCO (vvm) Liquid Phase 

100 25 0.75 0.5 0.7 Distilled water 

100 25 0.75 1.0 1.3 Distilled water 

100 25 0.75 2.0 2.7 Distilled water 

300 25 0.75 0.5 0.7 Distilled water 

300 25 0.75 1.0 1.3 Distilled water 

300 25 0.75 2.0 2.7 Distilled water 

300 25 0.75 2.0 2.7 Distilled water + PFC 

300 25 0.75 2.0 2.7 Distilled water + Tween® 80 

300 25 0.75 2.0 2.7 Distilled water + PFC + Tween® 80 

300 37 0.75 2.0 2.7 Distilled water 

500 25 0.75 0.5 0.7 Distilled water 

500 25 0.75 1.0 1.3 Distilled water 

500 25 0.75 2.0 2.7 Distilled water 

500 37 0.75 2.0 2.7 Distilled water 

500 25 0.75 2.0 2.7 Distilled water + PFC 

500 25 0.75 2.0 2.7 Distilled water + Tween® 80 

500 25 0.75 2.0 2.7 Distilled water + PFC + Tween® 80 

500 25 1.00 2.0 2.0 Distilled water 

500 25 1.00 2.0 2.0 Distilled water + PFC 

500 25 1.00 2.0 2.0 Distilled water + Tween® 80 

500 25 1.00 2.0 2.0 Distilled water + PFC + Tween® 80 

500 25 1.00 2.5 2.5 Distilled water 

500 25 1.00 2.5 2.5 Distilled water + PFC 

500 25 1.00 2.5 2.5 Distilled water + Tween® 80 

500 25 1.00 2.5 2.5 Distilled water + PFC + Tween® 80 

Where, N is the impeller agitation speed; T is the STR’s temperature; V is the STR’s volume; FCO is the 

gas flow rate; and QCO is the specific gas flow rate. 
 

Gas flow rate and agitation speed were chosen based in fermentation conditions and 

equipment limitations. Temperature was set at 25 ºC since most works in literature determine kLa 

for carbon monoxide at this temperature; and 37 ºC because its Clostridium optimal temperature 
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for synthesis gas fermentation. The STR operated during this experiments have a dual impeller 

configuration. Therefore, in order to fully access both Smith (bottom) and Rushton (top) impellers, 

working volume was increased from 0.75 L to 1.0 L. 

Four different liquid phase compositions were tested to evaluate its effect on carbon 

monoxide mass transfer to liquid phase. Tap water is mainly used in literature for CO concentration 

determination but distilled water was chosen due to its improved quality when compared to 

laboratory’s tap water. PFC was mixed with distilled water due to its capacity to enhance O2 

transfer to the liquid phase and its considerable affinity to CO. However, since PFC have a poor 

solubility in water, Tween® 80 was also mixed to distilled water and PFC to improve gas 

dispersion and liquid phase homogenisation. The emulsions distilled water + Tween® 80 and 

distilled water + PFC + Tween® 80 were prepared using a high performance dispersing instrument 

(ULTRA-TURRAX®). 

 

IV.3.1 – Reynolds and Froude numbers 

Reynolds and Froude are two important dimensionless numbers concerning reactor 

hydrodynamics. Reynolds number determines the nature of the flow. It can be defined as the ratio 

of inertial force to viscous or friction force and interpreted as the ratio of dynamic pressure to 

shearing stress, as represented in Equation (14) (COULSON and RICHARDSON, 1999). For 

agitated vessels, Reynolds number below 10 indicates a laminar flow, while a number above 104 

indicates a turbulent flow (BORZANI et al., 2001). Froude number measures the ratio of inertia 

force on an element of fluid to the weight of the fluid element, or the inertial force divided by 

gravitational forces, as represented in Equation (15). It governs the extent of swirling and vortexing 

in an unbaffled stirred tank (NAUMAN, 2008). A critical flow will have a Froude number of 1, 
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and supercritical and subcritical flows will have Froude numbers above and below 1.0, 

respectively. 

Reynolds and Froud numbers were calculated for pure distilled water at 25 and 37 ºC. They 

were not determined for the other liquid phases due to the lack of information about these mixtures’ 

densities and dynamic viscosities. Water density and dynamic viscosity at 25 ºC were considered, 

respectively, 997 kg/m3 and dynamic viscosity 0.000889 N.s/m2; and at 37 ºC, respectively, 993.3 

kg/m3 and 0.0006922 N.s/m2. Reynolds and Froude  

𝑅𝑒 =
𝑁 ∙ 𝐷𝑖

2 ∙ 𝜌

𝜇
 (14) 

𝐹𝑟 =
𝑁2 ∙ 𝐷𝑖

𝑔
 (15) 

Where, Re is the Reynolds number; N is the agitation speed; Di is the impeller diameter; ρ is the 

fluid’s density; µ is the fluid’s dynamic viscosity; Fr is the Froude number. And g is the 

gravitational force (admitted 9.81 m/s2). 

 

IV.4 – Myoglobin Bioassay Technique 

Procedure to measure carbon monoxide concentration in liquid phases is very delicate and 

prone to many experimental deviations mainly due to low volume manipulation and the presence 

of oxygen. Therefore, important care must be taken during experimental samplings and analysis 

such as covering cuvettes edge with a rubber stopper in order to decrease oxygen interference in 

the test. The bioassay is based on carbon monoxide and oxygen affinity for myoglobin as well as 

sodium dithionite capacity as a reducing agent. The complexation of myoglobin with carbon 

monoxide occurs in a 1:1 ratio since myoglobin has only one heme (LIM et al., 1995). Sodium 

dithionite reacts with oxygen in water also in a 1:1 ratio (BAJPAL, 2005). The bioassay technique 

here described is based on Kundu et al. (2003) and Kadic and Heindel (2014). 
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IV.4.1 – Phosphate buffer solution (0.1 M, pH 7.0) 

Potassium phosphate dibasic (3.3 g) and potassium phosphate monobasic (11.0 g) were 

mixed in 1.0 L of deionized water, resulting in a 0.1 M solution. The pH was adjusted to 7.0 using 

digital pH meter and 1 M solutions of potassium hydroxide and phosphoric acid. 

 

IV.4.2 – Myoglobin solution 

One gram of myoglobin (Mb), a dark red powder with strong iron smell, was dissolved in 

25 mL of phosphate buffer (0.1 M and pH 7.0). Slow stirring is important in order to decrease 

foam formation. Mb solution total volume was separated in 24 centrifuge tubes (2 mL total 

volume) with 1 mL each. Tubes were storaged in freezer at -20 ºC soon after preparation since Mb 

solution is extremely sensitive to temperature. For the same reason, Mb solution should only be 

thawed just before usage in order to avoid myoglobin degradation.  

The myoglobin solution is the base solution for this bioassay. It is used to prepare the test 

solution, which will be fundamental for sample analysis and base-spectra analysis. Therefore, it is 

very important to measure the myoglobin concentration. After a 2-mL centrifuge tube is thawed, 

1 µl of Mb solution is withdrawn and added to 1 mL of phosphate buffer 0.1M pH 7.0 present in 

a 1.5-mL polystyrene (PS) cuvette, which is covered with a rubber stopper. A spectrum is obtained 

in spectrophotometer between 400 and 700 nm wavelength with an absorbance peak at 409 nm. 

After scanning, 1 µL of Mb solution is added to the solution and the PS cuvette is scanned. This 

procedure continues until an absorbance peak of approximately 1.5 is reached at 409 nm. 

This spectrum represents the interaction between myoglobin and oxygen dissolved in 

solution and is one of the base-spectra, named “oxi” spectrum (MbO2). It is used to obtain the 

myoglobin solution concentration (Cp) and dilution ratio (DR). Equation (16) and (17) represent 
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the mathematical expressions for Cp and DR evaluation and Figure IV.1 illustrates an “oxi” spectra 

scanned between 400-700 nm wavelength range. 

𝐶𝑝 =
𝐴𝑏𝑠

𝜆 ∙ 𝜀𝑚
 (16) 

𝐷𝑅 =  
𝑉𝑀𝑏(𝜇𝑙)

𝑉𝐵(𝑚𝑙)
 (17) 

Where, Cp is the myoglobin solution concentration; Abs is the spectrum absorbance peak at 409 

nm; λ is the cuvette optical path (1 cm); εm is the extinction coefficient (188∙10-3[µM.cm]-1
, 

ANTONINI and BRUNORI, 1971; CASTRO-FORERO et al. 2009); DR is the dilution ratio; VMb 

is the total volume of myoglobin solution added to PS cuvette (in µL); and VB is volume of buffer 

added to the cuvette (1 mL). 

 

Figure IV.1 “Oxi” spectrum scanned using spectrophotometer at 400-700 nm wavelength. 
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IV.4.3 – Test solution 

Test solution is a mix of buffer and myoglobin solution prepared to perform the assay. 

From data obtained through the “oxi” spectrum, a test solution is prepared depending on how many 

cuvettes will be needed during the assay (n samples withdrawn from the bioreactor) and 3 reference 

solutions or base-solutions. Therefore, the total amount of cuvettes used would be n+3. In each 

cuvette, a 1 ml of test solution should be added, so (n+3) ml of buffer (VB) should be mixed with 

myoglobin in a beaker. Considering DR obtained from “oxi” spectrum, the total volume of 

myoglobin to prepare the test solution will be 𝑉𝑀𝑏 = 𝐷𝑅 ∙ 𝑉𝐵 = 𝐷𝑅 ∙ (𝑛 + 3). After the test 

solution is prepared, it is separated in the cuvettes which are covered with rubber stoppers. 

 

IV.4.4 – Reference solution and spectra 

Samples and reference solutions are prepared by adding 1 mL of test solution a 1.5 mL PS 

cuvettes. Reference solutions are scanned in spectrophotometer between 400-700 nm wavelength 

range and generate base-spectra or reference spectra. One of this cuvettes is a reference solution 

with myoglobin completely bounded to oxygen (MbO2) and is represented by an “oxiTS” 

spectrum. 

In order to eliminate any possible trace of oxygen in the other cuvettes and avoid affecting 

carbon monoxide concentration measurement, small quantities of sodium dithionite (Na2S2O4) are 

added to all cuvettes except to the solution that generated the “oxiTS” spectrum. Other cuvette 

containing myoglobin, buffer and Na2S2O4 represented the solution that generated the “deoxi” 

spectrum (Mb). This base-spectrum represents a solution with only myoglobin, free of oxygen and 

carbon monoxide, so is a zero CO concentration limit. 
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The other base-spectrum is obtained by purging pure CO into one of the cuvettes containing 

the test solution and Na2S2O4. The excess of CO guarantees that all myoglobin will be bonded to 

the CO molecule. This is known as the “carboxi” spectrum (MbCO) and represents a solution 

saturated with CO, where all myoglobin are combined with carbon monoxide. The base-spectra 

are obtained in spectrophotometer at 400-700 wavelength. Figure IV.2 illustrate the three reference 

or base-spectra, each one with its specific absorbance peak at a specific wavelength. 

 

 

Figure IV.2 Reference or base-spectra used in the present work: deoxi (Mb), oxi (MbO2), and carboxi (MbCO). 

 

IV.4.5 – Sampling and sample spectra 

Figure IV.3 illustrate the sampling process used in the present work. A winged infusion set 

(Wiltex, 0.64 x 19 mm) coupled with a 5.0 mL syringe (BD PlastipakTM) was placed in the STR’s 

recirculation line. Sample withdrawn was performed in regular intervals of 10±3 s. A 10 µL Gas-

Tight® syringe (Hamilton®, model 1701) was used to transfer 10 µL samples from the 5.0 mL 

syringe to the tapped PS cuvettes containing test solution and Na2S2O4. These solutions were 
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scanned in spectrophotometer at 400-700 nm wavelength range, originating the sample spectra. 

An example of all spectra obtained during one assay is presented in Figure IV.4. 

 

 

Figure IV.3 Equipment set-up used during mass transfer coefficient determination, representing sampling port, and 

recirculation line and gas inlet. 

 

 

Figure IV.4 Sample and reference spectra obtained in spectrophotometer to determine dissolved carbon monoxide 

concentration. 
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IV.3.5 – Dissolved carbon monoxide concentration 

All spectra data, reference and sample, were loaded in MATLAB as well as all time 

measurements. It is important that sample spectrum is placed between “deoxi” (zero carbon 

monoxide concentration limit) and “carboxi” (saturated carbon monoxide concentration limit) 

since these are, respectively, the minimum and maximum carbon monoxide concentration for the 

test (Figure IV.4). A least-square routine was created to interpolate sample spectra data between 

“deoxi” and “carboxi” spectra, resulting in a similarity to each spectra and a percentage of 

similarity (SS). The mathematical expression to obtain CO concentration is presented in Equation 

(18). Therefore, it is possible to calculate all CO concentration in liquid phase at specific sampling 

times. 

𝐶𝐶𝑂 = 𝐶𝑝𝑆𝑆 (
𝑉𝑇

𝑉𝑆
) (18) 

Where, CCO is the carbon monoxide concentration at the liquid phase; Cp is the myoglobin 

concentration; SS is the percentage of similarity; VT is the total volume in the cuvette and VS (10 

µl) is the sample volume of dissolved carbon monoxide. 

 

IV.5 – Overall Volumetric Mass Transfer Coefficient (kLa) 

Considering that the CO concentration in the liquid phase at gas-liquid interface is in 

equilibrium with the CO concentration in the gaseous phase, and that the resistance to mass transfer 

is in the stagnant liquid film, kLa can be determined by Equation (19). The overall volumetric mass 

transfer coefficient (kLa) is related to time and CO concentration gradient, which is the driving 

force for mass transfer. The gradient is formed between CO steady-state concentration (𝐶𝐶𝑂
𝑠 ) and 

CO concentration in the liquid phase (CCO) at any given time (t). In order to estimate kLa and 𝐶𝐶𝑂
𝑠 , 

a hybrid optimization method was performed in MATLAB R2015a combining PSO and Sequential 
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Quadratic Programming (SQP). Equation (19) was used as the gas-liquid mass transfer 

mathematical model and Maximum likelihood Method was chosen as objective function, 

represented in Equation (20). 

𝑑𝐶𝐶𝑂

𝑑𝑡
=  𝑘𝐿𝑎(𝐶𝐶𝑂

𝑠 − 𝐶𝐶𝑂) (19) 

Where, kLa is the overall volumetric mass transfer; 𝐶𝐶𝑂
𝑠  is the CO steady-state concentration; CCO 

is the carbon monoxide concentration at liquid phase; t is sampling time. 

𝐹𝑂𝑏𝑗 = ∑ ∑
(𝑦𝑖𝑗

𝑒 − 𝑦𝑖𝑗
𝑚(𝑥𝑖, 𝜽))

2

𝜎𝑖𝑗
2

𝑁𝑌

𝑗=1

𝑁𝐸

𝑖=1

 (20) 

Where, FObj represents the objective function; NE the number of experiments; NY the number of 

dependent variables; xi the independent variables; θ the parameters; ye
ij are the experimental values 

and ym
ij are the predicted values; and σij

2 experimental variance. 

The optimization problem can be posed as Equation (21): 

min
𝜽

𝐹𝑂𝑏𝑗(𝒀𝑒 , 𝒀𝑚, 𝒙)        𝑠. 𝑡.  {
𝑓(𝒀𝑚, 𝒙, 𝜽) = 0

𝜽𝒍 < 𝜽 < 𝜽𝒉
 

(21) 

where, θ is a parameter vector defined by Equation(22); FObj is the objective function; Ye is an 

experimental values matrix for NE experiments and NY measurements defined by Equation (23); 

Ym is a predicted values matrix for NE experiments and NY measurements defined by Equation 

(24); xi is the independent variable matrix defined by Equation (25); θl is the lower bound 

parameter vector defined by Equation (26); and θh is the upper bound parameter vector defined by 

Equation (27). Table IV.2 summarize all lower and upper bound values used for the present 

optimization, since it depends on the experimental condition. 

𝜽 = [𝑘𝐿𝑎 𝐶𝐶𝑂
𝑠 ]𝑇 

(22) 
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𝒀𝒆 =  [

𝐶𝐶𝑂,(1,1)
𝑒 ⋯ 𝐶𝐶𝑂,(1,𝑁𝐸)

𝑒

⋮ ⋱ ⋮
𝐶𝐶𝑂,(𝑁𝑌,1)

𝑒 ⋯ 𝐶𝐶𝑂,(𝑁𝑌,𝑁𝐸)
𝑒

] 
(23) 

𝒀𝒎 =  [

𝐶𝐶𝑂,(1,1)
𝑚 ⋯ 𝐶𝐶𝑂,(1,𝑁𝐸)

𝑚

⋮ ⋱ ⋮
𝐶𝐶𝑂,(𝑁𝑌,1)

𝑚 ⋯ 𝐶𝐶𝑂,(𝑁𝑌,𝑁𝐸)
𝑚

] 
(24) 

𝒙 = [𝑡1 ⋯ 𝑡𝑁𝑌]𝑇 
(25) 

𝜽𝒍 = [𝜃𝑙,1 𝜃𝑙,2]𝑇 (26) 

𝜽𝒉 = [𝜃ℎ,1 𝜃ℎ,2]𝑇 (27) 

As highlighted before, experimental deviations lead to uncertainty in parameter estimation. 

Therefore, in order to better evaluate kLa and 𝐶𝐶𝑂
𝑠 , likelihood confidence regions, parametric 

correlation and confidence interval were also performed. Equations (11), (12) and (13) describe 

the mathematical structures used in order to evaluate these regions and correlation. A confidence 

level (α) of 90% was chosen due to experimental uncertainty and each experiment has its (𝑁𝐸 ∙

𝑁𝑌 − 𝑁𝑃) degrees of freedom. Estimation units for kLa and 𝐶𝐶𝑂
𝑠  are s-1 and µM, respectively. 

 

Table IV.2 Upper and Lower Bound limits for optimization based on operational conditions, liquid phase and 

temperature (T, ºC). 

Liquid phase T (ºC) Lower/Upper Bound 

Distilled water 25 
𝜃𝑙 = [0 max(𝐶𝐶𝑂) ∙ 0.4]𝑇 

𝜃ℎ = [0.8 875.09]𝑇 

Distilled water 37 
𝜃𝑙 = [0 max(𝐶𝐶𝑂) ∙ 0.4]𝑇 

𝜃ℎ = [0.8 719.06]𝑇 

Water + PFC 

Water + Tween® 80 

Water + PFC + Tween® 80 

25 
𝜃𝑙 = [0      max(𝐶𝐶𝑂) ∙ 0.4]𝑇 

𝜃ℎ = [0.8 max(𝐶𝐶𝑂)]𝑇 

Where, T is temperature (ºC). 

 

IV.5.1 – PSO algorithm 
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PSO algorithm is a non-deterministic optimization method developed by Kennedy and 

Eberhart in 1995 and is presented here according to Schwaab et al. (2008). As explained before, 

each individual particle will have a best solution for itself and all other particles along the search 

path. Particles move along the search and exchange information with other particles according to 

Equations (28) and (29). 

𝑣𝑝,𝑑
𝑘+1 = 𝑤𝑣𝑝,𝑑

𝑘 + 𝑐1𝑟1(𝑥𝑝,𝑑
𝑖𝑛𝑑 − 𝑥𝑝,𝑑

𝑘 ) + 𝑐2𝑟2(𝑥𝑑
𝑔𝑙𝑜

− 𝑥𝑝,𝑑
𝑘 ) 

(28) 

𝑥𝑝,𝑑
𝑘+1 = 𝑥𝑝,𝑑

𝑘 + 𝑣𝑝,𝑑
𝑘+1 

(29) 

where, p denotes particles; d is the search direction; k is the iteration number; v is the 

velocity/pseudo velocity; x is the particle’s position; xind and xglo are points of the search space 

where FObj reaches an optimum value for each particle (ind) and for the whole swarm (glo); r1 and 

r2 are random numbers with uniform distribution in the range [0,1]; w, c1 and c2 are search 

parameters, which c1 is a cognitial parameter, c2 is a social parameter and w an inertial weight 

introduced by Shi and Eberhart (1998). 

For the present estimation some parameter values were assumed based on Schwaab et al. 

(2008) and the current problem are presented below. The total number of experiments conducted 

and replicates varied for each condition, so each condition had its degrees of freedom.  

 c1 = 2; 

 c2 = 2; 

 w = 0.9; 

 Number of particles = Np = p = 80; 

 Number of iterations = 1000 (Niter); 

 Number of parameters (search direction) = d = 2 (kLa and 𝐶𝐶𝑂
𝑠 ); 
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Particle Swarm Optimization Algorithm 

1. Initialize search parameters: 

a. Niter: number of interactions; 

b. Np: number of particles; 

c. Nd: number of searched dimensions (number of parameters); 

d. xMIN and xMAX: searching limits vectors (size Nd) 

e. PSO searching parameters: c1, c2 and w. 

set k = 0 

2. Calculate maximum particle velocity along search direction d: 

𝑣𝑑
𝑚𝑎𝑥 =

(𝑥𝑑
𝑚𝑎𝑥 − 𝑥𝑑

𝑚𝑖𝑛)

2
 (30) 

3. Calculate initial particle positions and velocities: 

𝑥𝑝,𝑑
𝑘 = 𝑥𝑑

𝑚𝑖𝑛 + 𝑟(𝑥𝑑
𝑚𝑎𝑥 − 𝑥𝑑

𝑚𝑖𝑛) 
(31) 

𝑣𝑝,𝑑
𝑘 = 𝑣𝑑

𝑚𝑎𝑥(2𝑟 − 1) 
(32) 

4. Evaluate objective function for each particle. 

5. Write particle positions and objective functions in a file to be used for construction of 

the confidence region. 

6. Update xglo, a vector with dimension Nd that contains the best position found by the 

world particle swarm. 

7. When the maximum number of iteration is achieved, k = Niter, the search is terminated. 

8. Update 𝑥𝑝
𝑖𝑛𝑑, a Np vector with dimension Nd that contains the best position found by 

each particle of the swarm. 

9. Calculate the inertial weight value: 
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𝑤 = 𝑤𝑜 + (𝑤𝑓 − 𝑤𝑜)
𝑘

𝑁𝑖𝑡𝑒𝑟
 

(33) 

10. Update the particle velocities for 𝑝 = 1 … 𝑁𝑝 and 𝑑 = 1 … 𝑁𝑑 using Equation (28). 

11. If the absolute particle velocity is higher than the maximum permitted value (𝑣𝑑
𝑚𝑎𝑥), 

then: 

𝑣𝑝,𝑑
𝑘+1 = 𝑣𝑑

𝑚𝑎𝑥𝑠𝑖𝑔𝑛(𝑣𝑝,𝑑
𝑘+1) 

(34) 

12. Update the particle position: 

𝑥𝑝,𝑑
𝑘+1 = 𝑥𝑝,𝑑

𝑘 + 𝑣𝑝,𝑑
𝑘  

(35) 

13. If the particle position is no inside the searching limits, the particle is placed at the 

violated searching limit. 

14. Add an iteration to k (k = k+1) and return to step 4. 
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Chapter V. RESULTS AND DISCUSSION 

In this chapter, results for the overall volumetric mass transfer coefficient (kLa) and carbon 

monoxide steady-state concentration (𝐶𝐶𝑂
𝑠 ) estimated values will be presented for different 

agitation speeds, specific gas flow rates, and liquid phases composition: pure distilled water; 

distilled water and PFC; distilled water and Tween® 80; distilled water, PFC and Tween® 80. 

Relevant figures will be added in order to illustrate discussion but all graphic results are presented 

in Appendix chapter.  

 

V.1 – The Myoglobin-Protein Bioassay 

The determination of carbon monoxide concentration in liquid phase can be challenging 

due to the absence of probes (KADIC and HEINDEL, 2014). However, as stated before, carbon 

monoxide concentration has been determined by both myoglobin-protein bioassay and gas 

chromatography (GC) in literature, presenting equivalent results (MUNASINGHE and KHANAL, 

2014). Therefore, since myoglobin bioassay is faster, cheaper and simpler than GC methodology, 

the method was performed in laboratory with some adaptations to the original reference (KUNDU 

et al., 2006; KADIC and HEINDEL, 2014) but without interference to the technique. 

Experimental uncertainty is present in many steps during myoglobin bioassay and, 

consequently, care must be taken to assure the measurement is correct. Ensuring that oxygen 

cannot be bound to myoglobin molecule is extremely important during this assay and care must be 

taken concerning small gas bubbles that can be trapped inside the syringe and can influence 

measurement negatively (KADIC and HEINDEL, 2014). Temperature is also a very important 

factor in myoglobin solution preparation, and exposure to room temperature should be minimized 

as much as possible since myoglobin can be degraded at this condition (KADIC and HEINDEL, 
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2014). Consequently, it is extremely important to prepare the test solution as soon as the myoglobin 

solution is thawed. Moreover, due to small volumes used throughout the assay, care must be taken 

during pipetting in order to avoid mistakes during sample dilution or sampling, which can impact 

directly carbon monoxide determination (RIGGS and HEINDEL, 2006). This was especially 

observed during test solution preparation and “oxi” spectrum reading.  

The complex myoglobin-oxygen (MbO2) solution, represented by the “oxi” spectrum, is 

prepared through repetitive additions of myoglobin solution into phosphate buffer until an 

absorbance peak of approximately 1.5 is reached at 409 nm. The “oxi” spectrum maximum 

absorbance peak is used to determine myoglobin concentration in its stock solution. On the other 

hand, test solution preparation included a mixture of myoglobin solution with a certain volume 

previously determined in “oxi” spectrum” and phosphate buffer. Consequently, the myoglobin 

addition techniques were different for both solutions and this can impact the myoglobin 

concentration transferred to the solution. 

In order to understand how this could affect carbon monoxide determination, two different 

MbO2 solutions were prepared and a spectrum was obtained for each one. The results are illustrated 

in Figure V.1. The MbO2 solution used to obtain the “oxi” spectrum was set using the classical 

technique explained in Chapter IV, item IV.4.2. The MbO2 solution used to obtain the “oxiTS” 

spectrum was prepared by transferring to a PS cuvette 1.0 mL of phosphate buffer and 5.0 µL of 

myoglobin solution (DR = 5), which is the volume amount necessary to reach a maximum 

absorbance peak of 1.5 (Chapter IV, item IV.4.4).  

Although both spectra account for a solution where all myoglobin are bounded to oxygen, 

there is a clear difference between absorbance peaks. Experimental error in pipetting is high due 

to operator and instrument error, which affects accuracy in the procedure. Since absorbance peaks 
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are different, myoglobin concentration is not the same for both solutions, even though both reached 

or passed the technique recommended absorbance peak (1.5). The maximum absorbance peaks 

were 2.025 for “oxi” spectrum solution and 1.718 for “oxiTS” spectrum solution, which represents 

a myoglobin concentration of 10.77 µM and 9.14 µM, respectively. As carbon monoxide 

concentration in liquid phase depends directly of myoglobin concentration, as demonstrated in 

Equation (18), this 15% difference between absorbance peaks can impact kLa and 𝐶𝐶𝑂
𝑠  estimation. 

As test solution is used to make “deoxi”, “carboxi” and “sample” spectra solutions, “oxiTS” 

spectrum was used to determine myoglobin concentration in test solution in order to decrease 

deviation impact in the estimation. 

 

Figure V.1 Difference between two myoglobin-oxygen spectra: “oxi” (A) and “oxiTS” (B). 
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V.2 – Pure Distilled Water Liquid Phase in kLa and 𝐶𝐶𝑂
𝑠  Estimation 

Most works presented in literature use tap water at 25 ºC as liquid phase in order to 

calculate carbon monoxide concentration and determine kLa and 𝐶𝐶𝑂
𝑠 (KAPIC et al., 2006; 

MUNASINGHE and KHANAL, 2012; MUNASINGHE and KHANAL, 2014; RIGGS and 

HEINDEL, 2006; SHEN et al., 2014; UNGERMAN and HEINDEL, 2007). For the present work, 

distilled water was chosen since laboratory tap water’s quality could compromise myoglobin 

structure. Therefore, in order to compare the estimated values obtained with literature and 

guarantee a good performance of the bioassay, this dissertation first approach involved different 

impeller agitation speed, specific gas flow rates and liquid volumes using pure distilled water as 

primary liquid phase at 25ºC. 

Table V.1 displays the estimated values for kLa and 𝐶𝐶𝑂
𝑠  in STR using 0.75 L pure distilled 

water as liquid phase at 25 ºC. These values were used to evaluate how agitation speed (100, 300 

and 500 rpm) and specific gas flow rate (0.7, 1.3 and 2.7 vvm) influenced the overall volumetric 

mass transfer coefficient and the carbon monoxide steady-state concentration. STR was operated 

with a water recirculation line at peristaltic pump maximum liquid pumping rate (65.26 mL/min), 

where the sampling port was placed (RIGGS and HEINDEL, 2006). This recirculation line 

promoted a better mixing in STR and also simplified sampling procedure. Reynolds and Froude 

number were calculated only for water at 25 ºC and 37 ºC. These dimensionless numbers were not 

calculated for the other liquid phases due to the lack of information about dynamic viscosity and 

density for these liquid mixtures. However, estimation of these physical properties are strongly 

encouraged for future work in order to complete hydrodynamics discussion for these systems. 
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Table V.1 Results of Re, Fr, kLa, 𝐶𝐶𝑂
𝑠 , and is confidence intervals (CI) obtained at different agitation speed (N) and 

specific gas flow rate (QCO) for carbon monoxide in 0.75 L of pure distilled water at 25 ºC and 65.26 mL/min 

recirculated liquid flow. 

N (rpm) Re Fr QCO (vvm) kLa ± CI (h-1) 𝑪𝑪𝑶 
𝒔 ± 𝑪𝑰 (𝝁𝑴) 

100 3.62x103 0.01 0.7 18.87 ± 0.79 358.23 ± 11.60 

100 3.62x103 0.01 1.3 27.11 ± 4.38 693.41 ± 78.16 

100 3.62x103 0.01 2.7 56.07 ± 1.57 716.71 ± 10.05 

300 1.09x104 0.11 0.7 58.59 ± 1.79 473.29 ± 3.57 

300 1.09x104 0.11 1.3 80.90 ± 18.91 547.51 ± 43.98 

300 1.09x104 0.11 2.7 166.11 ± 16.37 647.08 ± 4.55 

500 1.81x104 0.31 0.7 59.04 ± 9.26 562.08 ± 29.71 

500 1.81x104 0.31 1.3 149.16 ± 12.46 602.28 ± 10.99 

500 1.81x104 0.31 2.7 399.06 ± 18.25 743.27 ± 3.62 

Where, N is the agitation speed (in rpm); Re is the Reynolds number; Fr is the Froude number; Qco is the 

specific gas flow rate (in vvm); kLa is the overall volumetric mass transfer coefficient (in h-1); CI is the 

confidence interval; and 𝐶𝐶𝑂
𝑠 is the CO steady-state concentration (in µM). 

 

Concerning 100 rpm agitation speed, it is not possible to affirm that the only resistance to 

mass transfer is in the liquid stagnant film. Reynolds number is below 104 indicating a transient 

flow in agitated vessels (BORZANI et al., 2001). Therefore, resistance in liquid bulk cannot be 

overlooked and the model for mass transfer and its resistances should be revised. All Froude 

number indicate that the flow is subcritical (Fr < 1) at this temperature. 

When operated at 0.75 L, the upper impeller (Rushton) was barely accessed since it stayed 

at the edge of the liquid phase. It is possible, however, to observe that the efficiency of Smith-type 

impeller in decreasing bubble size and increasing kLa (KADIC and HEINDEL, 2014). For a same 

agitation speed, kLa estimated values increased with specific gas flow rate increase. From 0.7 to 

2.7 vvm, kLa enhanced 2.97 times, 2.83 times and 6.76 times comparing 100, 300 and 500 rpm, 

respectively. This is directly related to carbon monoxide molecule availability in liquid phase due 

to higher gas flow, which increases gas molecules in the system. Considering a same specific gas 

flow rate, kLa increased with agitation speed. From 300 to 500 rpm, kLa enhanced 1.84 times and 
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2.40 times for specific gas flow rates of 1.3 and 2.7 vvm, respectively. However, at a lower specific 

gas flow rate (0.7 vvm), kLa for 300 and 500 rpm were the same. Mass transfer efficiency is a 

balance between agitation speed and gas flow rate. Therefore, further increasing agitation speed at 

0.7 vvm would probably lead to voids and recirculation loops in the reactor (Figure III.5-E), 

impairing gas dispersion and mass transfer (KADIC and HEINDEL, 2014) mass transfer 

coefficients for 300 and 500 rpm at 0.7 vvm were the same. Increasing impeller agitation speed 

promotes not only a better mixing in liquid phase but also an increase in gas superficial area, which 

enhances mass transfer directly.  

Further increasing agitation speed could be tempting but not only power consumption 

would increase but impeller efficiency would decrease due to the formation of large cavities at the 

impeller back (KADIC and HEINDEL, 2014). Moreover, it should be noted that some agitation 

speeds can cause shear stress in microorganisms, decreasing cell viability and, consequently, 

productivity (BORZANI et al., 2001). 

It should be considered that the estimated value for carbon monoxide steady-state 

concentration did not reach CO maximum solubility in water at 25 ºC, 875.09 µM (PENNEY, 

2002). During kLa experiments, gas saturation should be close to standard saturation values but, 

most of the time, these values are similar but not exactly the same. Figure V.2 display CO 

concentration variation with time in a 0.75 L pure distilled water at 25 ºC, 300 rpm and 1.3 vvm. 

According to these results, CO concentration does not reach the steady-state during the assay. The 

same was observed for pure distilled water at 300 rpm and 500 rpm at lower specific gas flow rate 

(0.7 vvm). Therefore, these experiments should be conducted for longer periods of time until a 

steady-state is reached. 
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Figure V.2 Model prediction for pure distilled water at 25 ºC, 100 rpm and 1.3 vvm. 

 

It can be seen in Table V.1 that at lower specific gas flow rates, agitation speed alone 

cannot increase mass transfer, which indicated that flow behaviour is not only imposed by the 

impeller but also by gas velocity. As specific gas flow rate was increased, 𝐶𝐶𝑂
𝑠  estimated value also 

increased, reaching closer to maximum solubility limit. Therefore, an increase in gas velocity 

promoted a better mixing in the liquid bulk, increasing mass transfer. 

In order to fully access both Smith and Rushton impellers, the liquid volume was increased 

to 1.0 L and kLa results for 500 rpm and different specific gas flow rates are shown in Table V.2. 

Due to a limitation in the rotameter it was not possible to produce results with a 2.7 vvm specific 

gas flow rate (2.7 L/min gas flow), therefore QCO used was 2.0 vvm (2.0 L/min gas flow) and 2.5 

vvm (2.5 L/min gas flow, maximum limit in rotameter). The overall volumetric mass transfer 

coefficient for 500 rpm and 2.0 vvm is lower than 500 rpm and 2.7 vvm (Table V.1, 399.06 h-1) 

due to the lower specific gas flow rate. Increasing liquid volume and maintaining gas flow rate 

reduces the amount of molecules per unit of volume or the specific gas flow rate, therefore 

reducing kLa. 
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These results show that increasing specific gas flow rate from 0.7 to 2.7 vvm, at the same 

agitation speed (500 rpm), enhanced CO mass transfer to liquid bulk because gas velocity increase 

would enhance mixing in the bioreactor. This indicates that not only agitation speed but specific 

gas flow rate is important for mass transfer in liquid phase. However, the same behaviour was not 

observed for 500 rpm and 2.0 vvm, which presented a lower value compare to 500 rpm and 1.3 

vvm (Table V.1, 149.16 h-1). This experiment was conducted in duplicate, so number of 

experiments may have impacted the accurate estimation of parameter value.  

 

Table V.2 Results of Re, Fr, kLa, 𝐶𝐶𝑂
𝑠 , and its confidence intervals (CI) obtained at different specific gas flow rate 

(QCO) for carbon monoxide in 1.0 L of pure distilled water at 25 ºC, 500 rpm and 65.26 mL/min recirculated liquid 

flow. 

N (rpm) Re Fr QCO (vvm) kLa ± CI (h-1) 𝑪𝑪𝑶 
𝒔 ± 𝑪𝑰 (𝝁𝑴) 

500 1.81x104 0.31 2.0 111.48 ± 58.97 531.86 ± 50.53 

500 1.81x104 0.31 2.5 226.79 ± 26.86 609.96 ± 11.48 

Where, N is the agitation speed (in rpm); Re is the Reynolds number; Fr is the Froude number; Qco is the 

specific gas flow rate (in vvm); kLa is the overall volumetric mass transfer coefficient (in h-1); CI is the 

confidence interval; and 𝐶𝐶𝑂
𝑠  in the CO steady-state concentration (in µM). 

 

Synthesis gas fermentation is conducted at bacteria optimum temperature, 37 ºC, in which 

carbon monoxide solubility in water is decreased (719.06 µM). Therefore, kLa and 𝐶𝐶𝑂
𝑠  were 

estimated at this temperature, 300 and 500 rpm, and 2.7 vvm. Results are summarized in Table 

V.3. The overall volumetric mass transfer coefficient was 24% lower for 300 rpm, 37ºC compared 

to 25ºC; and 75% lower comparing 500 rpm, 25º C to 37º C. Although some experimental 

deviation should be considered, due to low gas solubility at 37 ºC and high agitation speed (500 

rpm), carbon monoxide bubbles would migrate more to the gas phase headspace (0.75 L), which 

would decrease carbon monoxide transfer to the liquid bulk. 
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Table V.3 Results of Re, Fr, kLa,𝐶𝐶𝑂
𝑠 , and its confidence interval (CI) obtained at different agitation speed (N) for 

carbon monoxide in 0.75 L of pure distilled water at 37 ºC, 2.7 vvm specific gas flow rate and 65.26 mL/min 

recirculated liquid flow. 

N (rpm) Re Fr 
QCO (vvm) kLa ± CI (h-1) 

𝑪𝑪𝑶 
𝒔 ± 𝑪𝑰 

(𝝁𝑴) 

300 1.09x104 0.11 2.7 126.08 ± 9.44 609.55 ± 15.33 

500 1.81x104 0.31 2.7 98.15 ± 8.62 679.00 ± 14.09 

Where, N is the agitation speed (in rpm); Re is the Reynolds number; and Fr is the Froude number; Qco is 

the specific gas flow rate (in vvm); kLa is the overall volumetric mass transfer coefficient (in h-1); CI is the 

confidence interval; and 𝐶𝐶𝑂
𝑠 is the CO steady-state concentration (in µM). 

 

Another fact that leads to an increase in overall volumetric mass transfer coefficient is 

bioreactor configuration of the present work. This stirred tank reactor is operated with a dual 

impeller configuration: a six-bladed Smith-type and a six-bladed Rushton-type, both radial flow 

impellers. A dual impeller configuration already improved kLa in a stirred tank reactor tested 

alternating two different axial flow impellers (Rushton-type and Philadelphia Mixing concave 

turbine) and six different radial flow impellers (Philadelphia Mixing pitched blade turbine, 

Lightnin A315 fluid foil, Lightnin A310 and Philadelphia Mixing LS hydrofoil) (UNGERMAN 

and HEINDEL, 2007).  

Although Rushton-type impellers are the most used in gas-liquid system, standard 

Rushton-type can add a higher shear stress around the impeller, a power draw drop upon gassing, 

an energy dissipation not uniformly distributed and a low gas hold up near the bottom of the tank 

(BAKKER and VAN DER AKKER, 1994). Concave impeller, such as Smith-type, promotes a 

higher gas dispersion in comparison to Rushton-Type and can result in higher kLa values at high 

gas flow rates (UNGERMAN and HEINDEL, 2007). Ungerman and Heindel (2017) concluded 

that mass transfer increases with gas flow rate but its magnitude depends on the impeller scheme. 

For a stirred tank with dual impeller Rushton-Type at 400 rpm agitation speed and 2.14 vvm 
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specific gas flow rate, the researchers achieved a kLa of 153 h-1 (Table III.1, reference 2). A kLa of 

399.06 h-1was obtained in the present study at 500 rpm agitation speed, 2.7 vvm specific gas flow 

rate and 0.75 L working volume (Table V.1) using a dual impeller configuration combining a 

Rushton-type and a Smith-type impellers. As the present data available in Table V.1 and Table 

V.2 show, the concave impeller has its mass transfer capability enhanced with the increase in gas 

flow rate (UNGERMAN and HEINDEL, 2007). Also, the diameter of the holes present in the 

topside of the perforated ring sparger produced small bubbles, which also increases the volumetric 

mass transfer. 

 

V.3 – PFC Influence in Distilled Water for kLa and 𝐶𝐶𝑂
𝑠  Estimation 

PFC was responsible for increasing oxygen uptake and mass transfer to liquid phases in 

aerobic systems (AMARAL et al., 2006; AMARAL et al., 2008; CHO and WANG, 1988; 

ELIBOL, 1996; ELIBOL, 1997; ELIBOL AND MAVITUNA, 1995; JU and LEE, 1991; JUNKER 

et al., 1990; MCMILLAN and WANG, 1987; TURICK and BULMER, 1998; 

WASANASATHIAN and PENG, 2001). Therefore, since carbon monoxide solubility to PFC is 

higher than to water (CABRALES et al., 2007), values for kLa and carbon monoxide steady-state 

concentration were estimated for distilled water and PFC mixture. Results for 300 and 500 rpm 

agitation speeds, 25ºC, 0.75 and 1.0 L working volume and different specific gas flow rate are 

summarized in Table V.4. 

In comparison to pure distilled water (Table V.1 and Table V.2), kLa for distilled water and 

PFC does not increase with specific gas flow rate and its values are lower than kLa for pure distilled 

water at 500 and 300 rpm, 2.7 vvm. Overall volumetric mass transfer coefficient for distilled water 

and PFC is almost the same for 300 rpm and 500 rpm at 2.7 vvm. Moreover, values for these 
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conditions were below kLa obtained for same agitation speeds and specific gas flow rate, 

considering pure distilled water as liquid phase. It was observed that distilled water and PFC 

mixture was not homogenous as it should be (detected visually), with PFC being at the bottom of 

the reactor. This probably offered a resistance for carbon monoxide transfer to the water phase due 

to its absorption in the PFC phase. Perfluorodecalin has a low solubility in water so, in order to 

increase carbon monoxide transfer to the liquid phase both PFC and water have to be well mixed 

(AMARAL et al., 2008). 

 

Table V.4 Results of kLa, 𝐶𝐶𝑂
𝑠  and its confidence interval (CI) obtained for different reactor volume (V), agitation 

speed (N) and specific gas flow rate (QCO) for carbon monoxide in a liquid mixture distilled water and PFC at 25 ºC 

and 65.26 mL/min recirculated liquid flow. 

V (L) N (rpm) QCO (vvm) kLa ± CI (h-1) 𝑪𝑪𝑶 
𝒔 ± 𝑪𝑰 (𝝁𝑴) 

1.00 500 2.0 134.18 ± 12.18 502.36 ± 5.60 

1.00 500 2.5 153.52 ± 13.08 493.79 ± 7.42 

0.75 500 2.7 86.28 ± 8.86 583.97 ± 28.25 

0.75 300 2.7 90.06 ± 24.90 470.36 ± 9.33 

Where, V is the reactor volume (in L); N is the agitation speed (in rpm); Qco is the specific gas flow rate 

(in vvm); kLa is the overall volumetric mass transfer coefficient (in h-1); CI is the confidence interval; and 

𝐶𝐶𝑂
𝑠 is the CO steady-state concentration (in µM). 

 

Therefore, in order to increase system mixing, bioreactor working volume was increased 

from 0.75 L to 1.00 L to cover the upper impeller, which was at the edge of the liquid when 0.75 

L of working volume was used. The agitation speed was 500 rpm, for which a higher kLa was 

obtained in comparison to 300 rpm in pure distilled water. According to Table V.4, however, kLa 

did not improve with PFC and water mixture (2.0 and 2.5 vvm) in comparison to pure distilled 

water at the same conditions (Table V.2, 2.0 and 2.5 vvm at 500 rpm). Although the increase in 

working volume did not favour CO transfer to the liquid phase, it promoted a better dispersion of 
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PFC in water (detected visually), which is essential for the dissociation of molecules from the PFC 

to the aqueous phase. 

The capture of gaseous molecules to the PFC is facilitated because it has a higher solubility 

for several molecules (ex. CO2 and O2) than water (LOWE et al., 1998). Nonetheless, the transfer 

from PFC to the aqueous phase needs a huge transfer area, which is accomplished when droplets 

of PFC are present in water rather than at the bottom of the reactor. Therefore, in the presence of 

PFC and at 500 rpm, an increase in kLa was observed when the working volume was increased, 

even at lower specific gas flow rate: comparing 0.75 L and 2.7 vvm to 1.0 L and 2.0 vvm (Table 

V.4), 64%; and comparing 0.75 L and 2.7 vvm to 1.0 L and 2.5 vvm, 56% (Table V.4). 

Comparing to pure water at 500 rpm and 2.0 vvm (Table V.2), kLa for PFC and water 

mixture at the same conditions was slightly higher. The increase in bioreactor volume allowed a 

slightly increase of PFC mixing in distilled water, which marginally increased CO mass transfer 

from PFC to aqueous phase. However, when increasing specific gas flow rate (2.5 vvm), there was 

no expressive increase in volumetric mass transfer probably due to the interface area of large PFC 

droplets in water that, in this case (of higher specific gas flow rate) was not big enough to transfer 

more CO molecules.  

 

V.4 – Tween® 80 Influence in kLa and 𝐶𝐶𝑂
𝑠  Estimation for Mixtures with Distilled Water, and 

Distilled Water and PFC 

Tween® 80 was added to liquid phase in order to increase PFC dispersion, reducing its 

droplets, and enhance carbon monoxide transfer to distilled water. Therefore, two approaches were 

performed. First, CO mass transfer was analysed in distilled water and Tween® 80 mixture and 

then in distilled water, PFC and Tween® 80 mixture. The experiments were conducted at 25 ºC, 
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0.75 L and 1 L, and 300 rpm and 500 rpm in order to compare Tween® 80’s effect in increasing 

kLa, alone and in a mixture with PFC. Results are summarized in Table V.5 for distilled water and 

Tween® 80 mixture and Table V.6 for distilled water, PFC and Tween® 80 mixture. 

Tween® 80 was responsible for increasing kLa at all reactor volumes and specific gas flow 

rates, even without PFC. Compared to kLa results from pure distilled water (Table V.1 and Table 

V.2), mixing Tween® 80 in water (Table V.5) increased kLa in 59% (500 rpm, 2.0 vvm), 20% 

(500 rpm, 2.5 vvm), 28% (500 rpm, 2.7 vvm) and 2 times (300 rpm, 2.7 vvm). Tween® 80 has 

both hydrophobic and hydrophilic character, being able to reduce gas bubbles and avoid 

coalescence between them (WUELFING et al., 2006), which increases CO transfer area favouring 

kLa. Moreover it was observed that Tween® 80 is not a resistance for CO mass transfer to water 

due to kLa increase. Mass transfer increased with specific gas flow rate at 500 rpm and with 

agitation speed at 2.7 vvm, the same behaviour observed for pure distilled water at the same 

conditions. This pattern was also observed in distilled water mixed with PFC and Tween® 80, 

displayed in Table V.6. 

 

Table V.5 Results of kLa, 𝐶𝐶𝑂
𝑠  and its confidence interval (CI) obtained at different reactor volume (V), agitation speed 

(N) and specific gas flow rate (QCO) for carbon monoxide in a mixture of distilled water and Tween® 80 at 25 ºC and 

65.26 mL/min recirculated liquid flow 

V (L) N (rpm) 
QCO (vvm) kLa ± CI (h-1) 

𝑪𝑪𝑶 
𝒔 ± 𝑪𝑰 

(𝝁𝑴) 

1.00 500 2.0 177.43 ± 39.64 719.82 ± 28.12 

1.00 500 2.5 272.56 ± 20.18 669.46 ± 4.72 

0.75 500 2.7 512.59 ± 75.67 629.86 ± 14.88 

0.75 300 2.7 370.25 ± 102.07 602.53 ± 11.16 

Where, V is the reactor volume (in L); N is the agitation speed (in rpm); Qco is the specific gas flow rate 

(in vvm); kLa is the overall volumetric mass transfer coefficient (in h-1); CI is the confidence interval; and 

𝐶𝐶𝑂
𝑠  is the CO steady-state concentration (in µM). 
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When added to the mixture of distilled water and Tween® 80, PFC dispersion was 

increased forming a white coloured liquid, presented in Figure V.3. Comparing to water and PFC 

mixture at 500 rpm and 2.7 vvm, kLa was enhanced 7 times when Tween® 80 was added to the 

mixture, and carbon monoxide steady-state concentration enhanced 31%. Comparing to pure 

distilled water at 500 rpm and 2.7 vvm, kLa was enhanced 51% but carbon monoxide steady-state 

concentration did not change considerably (3%). Considering 500 rpm and 2.0 vvm, 1.0 mL 

working volume and PFC well dispersed by Tween® 80, a kLa 3 times higher than for pure distilled 

water was achieved, while Tween® 80 alone increased the transfer rate 59%. 

 

Figure V.3 Water, PFC and Tween® 80 emulsion prepared with ULTRA-TURRAX® (left) and in the STR (right). 

 

Carbon monoxide steady-state concentration for distilled water and PFC; distilled water 

and Tween® 80; and distilled water, PFC and Tween® 80, are not available in literature. Although 

values of 𝐶𝐶𝑂
𝑠  for distilled water mixed with Tween® 80 and for distilled water mixed with PFC 

were close, the same was not true for distilled water mixed with PFC and Tween® 80, probably 

due to the high amount of experimental deviation. The following section will approach the data 

statistical analysis in order to demonstrate how this experimental deviation affects the estimation. 
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Table V.6 Results of kLa, 𝐶𝐶𝑂
𝑠  and its confidence interval (CI) obtained at different reactor volume (V), agitation speed 

(N) and specific gas flow rate (QCO) for carbon monoxide in a liquid mixture composed of distilled water, PFC and 

Tween® 80 liquid mixture at 25 ºC and 65.26 mL/min recirculated liquid flow, 

V (L) N (rpm) 
QCO (vvm) kLa ± CI (h-1) 

𝑪𝑪𝑶 
𝒔 ± 𝑪𝑰 

(𝝁𝑴) 

1.00 500 2.0 346.74 ± 73.63 465.65 ± 8.70 

1.00 500 2.5 371.75 ± 91.06 831.66 ± 24.00 

0.75 500 2.7 603.49 ± 445.07 767.36 ± 28.29 

0.75 300 2.7 377.70 ± 69.67 531.68 ± 24.61 

Where, V is the reactor volume (in L); N is the agitation speed (in rpm); Qco is the specific gas flow rate 

(in vvm); kLa is the overall volumetric mass transfer coefficient (in h-1); CI is the confidence interval; and 

𝐶𝐶𝑂
𝑠  is the CO steady-state concentration (in µM). 

 

The highest overall volumetric mass transfer coefficient obtained in the present work for 

CO in distilled water at 25 ºC at 500 rpm and 2.7 vvm was 399.06±18.07 h-1. Considering water 

as liquid phase, this kLa is the higher obtained so far in literature for STR (BREDWELL et al., 

1999; KAPIC et al., 2006; RIGGS and HEINDEL, 2006; UNGERMAN and HEINDEL, 2007; 

YOUNESI et al., 2008). Kapic et al. (2006) and the present work achieved a similar kLa for 500 

rpm and a similar specific gas flow rate (1.07 – KAPIC et al, 2006, and 1.3 – present work), 144.0 

h-1 and 149.16 h-1, respectively. The main difference between both works are the bioreactor 

configuration, in which Kapic et al. (2006) used a Rushton-type impeller and four baffles. The 

STR in the present work does not have any baffles, which would promote an even better mixing 

and increase mass transfer (KADIC and HEINDEL, 2014). Moreover, the use of a distilled water, 

PFC and Tween® 80 mixture not only increased kLa in comparison to pure distilled water (603.49 

h-1 compared to 399.06 h-1) but also achieved the highest kLa for stirred tank bioreactors reported 

in literature. So far, only membrane bioreactors presented a higher overall volumetric mass transfer 

rate (MUNASINGHE and KHANAL, 2012; SHEN et al., 2014a).  
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V.5 – Statistical Analysis of Estimated Values 

Although it is expressed emphatically in literature that myoglobin bioassay is a technique 

prone to many sources of experimental uncertainty (KADIC and HEINDEL, 2014), maximum 

likelihood was not considered as a parameter estimation method for kLa and 𝐶𝐶𝑂
𝑠 . Alongside MLE, 

the present work also performed a least squares routine to determine kLa. However results were 

statistically irrelevant, as well as physically improbable, when compared to MLE results. 

Therefore, MLE method and a hybrid optimization were performed in order to obtain kLa and 𝐶𝐶𝑂
𝑠  

as well as confidence regions and intervals. Parametric correlation was also calculated. 

In order to appropriately estimate kLa and 𝐶𝐶𝑂
𝑠  some important remarks about the system 

behaviour were considered. For example, negative values for kLa and carbon monoxide steady-

state concentration are prohibitive since it is physically unfeasible. Therefore, zero is the lower 

limit for all parameters. The upper bound for CO steady-state concentration are not arbitrary, also. 

It is based on carbon monoxide maximum solubility in water at a given temperature. At 25 ºC and 

37 ºC, carbon monoxide solubility in water is 24.5 mg/L and 20.15 mg/L respectively (PENNEY, 

2002). This solubility corresponds to a steady-state concentration of 875.09 µM (25 ºC) and 719.06 

µM (37 ºC). However, since carbon monoxide solubility in distilled water and PFC mixture, 

distilled water and Tween® 80 mixture; and distilled water, PFC and Tween® 80 mixtures are not 

available in literature, the maximum carbon monoxide concentration value for each experiment 

was considered the upper bound for carbon monoxide steady-state concentration in these liquid 

mixtures. 

Table V.7 to Table V.11 summarizes all kLa and 𝐶𝐶𝑂
𝑠  estimated values for each condition 

studied, as well as the parametric correlation between kLa and 𝐶𝐶𝑂
𝑠 , its confidence intervals and 

minimum objective function value for PSO and Deterministic Optimization. In order to illustrate 
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this discussion, a few confidence regions and model prediction graphics were selected for 

explanation. All graphic obtained for the present work are present in the appendix chapter. 

Hybrid optimization strategy consisted of performing a PSO method using Maximum 

Likelihood as objective function for 1000 iterations and 80 particles. The resulting kLa and 𝐶𝐶𝑂
𝑠  

were used as initial guess for a derivative method, which resulted in the estimated parameters 

values presented in this work. Likelihood regions, confidence intervals and parametric correlation 

were obtained based on these methods. From Table V.7 to Table V.11, it can be observed the same 

or similar objective function values for PSO (FObj – PSO) and deterministic optimization (FObj – 

D.O). This happened due to the high number of iterations and particles chose for PSO, which 

increase the likelihood of finding a minimum.  

 

Table V.7 Results of kLa and 𝐶𝐶𝑂
𝑠  alongside its confidence intervals, parametric correlation and objective function 

values at different agitation speed (N) and specific gas flow rate (QCO) for carbon monoxide in 0.75 L and 1.0 L of 

pure distilled water at 25 ºC and 65.26 mL/min recirculated liquid flow. 

N (rpm) QCO (vvm) kLa±CI (h-1) 
𝑪𝑪𝑶 

𝒔 ± 𝑪𝑰 
(𝝁𝑴) 

ρ 
FObj– 

PSO 
FObj–D.O 

100 0.7 18.87±0.79 358.23±11.60 -0.9965 571.4370 571.2350 

100 1.3 27.11±4.38 693.41±78.16 -0.9793 25.6312 25.6311 

100 2.7 56.07±1.57 716.71±10.05 -0.8727 69.3040 69.3038 

300 0.7 58.59±1.79 473.29±3.57 -0.8685 180.8064 180.7972 

300 1.3 80.90±18.91 547.51±43.98 -0.8166 39.9407 39.9407 

300 2.7 166.11±16.37 647.08±4.55 -0.4236 89.2647 89.2646 

500 0.7 59.04±9.26 562.08±29.71 -0.9198 62.4673 62.4665 

500 1.3 149.16±12.46 602.28±10.99 -0.5534 48.2534 48.2527 

500 2.0 111.48±58.97 531.86±50.53 -0.6273 18.8608 18.8608 

500 2.5 226.79±26.86 609.96±11.48 -0.2522 38.2703 38.2702 

500 2.7 399.06±18.25 743.27±3.62 -0.3616 55.3834 55.3833 

Where, N is the agitation speed (in rpm); Qco is the specific gas flow rate (in vvm); kLa is the overall 

volumetric mass transfer coefficient with its confidence interval (in h-1); 𝐶𝐶𝑂
𝑠 is the CO steady-state 

concentration with is confidence interval (in µM); CI is the confidence interval; ρ is the parametric 

correlation; FObj-PSO is the objective function minimum value obtained in PSO; and FObj-D.O is the 

objective function minimum value obtained through deterministic optimization. 



70 

 

Table V.8 Results of kLa and𝐶𝐶𝑂
𝑠  alongside its confidence intervals, parametric correlation and objective function 

values at different agitation speed (N) for carbon monoxide in 0.75 L pure distilled water at 37 ºC, 2.7 vvm specific 

gas flow rate and 65.26 mL/min recirculated liquid flow. 

N (rpm) QCO (vvm) kLa±CI (h-1) 
𝑪𝑪𝑶 

𝒔 ± 𝑪𝑰 
(𝝁𝑴) 

ρ FObj – PSO FObj – D.O 

300 2.7 126.08±9.44 609.55±15.33 -0.8292 38.5014 38.5013 

500 2.7 98.15±8.62 679.00±14.09 -0.9694 52.0885 52.0873 

Where, N is the agitation speed (in rpm); Qco is the specific gas flow rate (in vvm); kLa is the overall 

volumetric mass transfer coefficient with its confidence interval (in h-1);𝐶𝐶𝑂
𝑠 is the CO steady-state 

concentration with is confidence interval (in µM); CI is the confidence interval; ρ is the parametric 

correlation; FObj-PSO is the objective function minimum value obtained in PSO; and FObj-D.O is the 

objective function minimum value obtained through deterministic optimization. 

 

 

Table V.9 Results of kLa and 𝐶𝐶𝑂
𝑠  alongside its confidence intervals, parametric correlation and objective function 

values at different agitation speed (N) and specific gas flow rate (QCO) for carbon monoxide in liquid mixture 

composed of distilled water and PFC at 25 ºC and 65.26 mL/min recirculated liquid flow. 

N (rpm) QCO (vvm) kLa±CI (h-1) 
𝑪𝑪𝑶 

𝒔 ± 𝑪𝑰 
(𝝁𝑴) 

ρ FObj – PSO FObj – D.O 

500 2.0 134.18±12.18 502.36±5.60 -0.4988 57.8123 57.8121 

500 2.5 153.52±13.08 493.79±7.42 -0.6294 51.6489 51.6482 

500 2.7 86.28±8.86 583.97±28.25 -0.9982 96.0778 96.0733 

300 2.7 90.06±24.90 470.36±9.33 -0.3598 34.1995 34.1993 

Where, N is the agitation speed (in rpm); Qco is the specific gas flow rate (in vvm); kLa is the overall 

volumetric mass transfer coefficient with its confidence interval (in h-1); 𝐶𝐶𝑂
𝑠 is the CO steady-state 

concentration with is confidence interval (in µM); CI is the confidence interval; ρ is the parametric 

correlation; FObj-PSO is the objective function minimum value obtained in PSO; and FObj-D.O is the 

objective function minimum value obtained through deterministic optimization. 
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Table V.10 Results of kLa and 𝐶𝐶𝑂
𝑠  alongside its confidence intervals, as well as parametric correlation and objective 

function values at different agitation speed (N) and specific gas flow rate (QCO) for carbon monoxide in a liquid 

mixture composed of distilled water and Tween® 80 at 25 ºC and 65.26 mL/min recirculated liquid flow. 

N (rpm) QCO (vvm) kLa±CI (h-1) 
𝑪𝑪𝑶 

𝒔 ± 𝑪𝑰 
(𝝁𝑴) 

𝝆 FObj – PSO FObj – D.O 

500 2.0 177.43±39.64 719.82±28.12 -0.8323 42.8305 42.8305 

500 2.5 272.56±20.18 669.46±4.72 -0.1076 105.9809 105.9792 

500 2.7 512.59±75.67 629.86±14.88 -0.5066 39.0300 39.0300 

300 2.7 370.25±102.07 602.53±11.16 -0.3023 49.5023 49.5023 

Where, N is the agitation speed (in rpm); Qco is the specific gas flow rate (in vvm); kLa is the overall 

volumetric mass transfer coefficient with its confidence interval (in h-1); 𝐶𝐶𝑂
𝑠 is the CO steady-state 

concentration with is confidence interval (in µM); CI is the confidence interval; ρ is the parametric 

correlation; FObj-PSO is the objective function minimum value obtained in PSO; and FObj-D.O is the 

objective function minimum value obtained through deterministic optimization. 

 

Table V.11 Results of kLa and 𝐶𝐶𝑂
𝑠  alongside its confidence intervals, as well as parametric correlation and objective 

function values at different agitation speed (N) and specific gas flow rate (QCO) for carbon monoxide in a liquid 

mixture composed of distilled water, PFC and Tween® 80 at 25 ºC and 65.26 mL/min recirculated liquid flow. 

N (rpm) QCO (vvm) kLa±CI (h-1) 
𝑪𝑪𝑶 

𝒔 ± 𝑪𝑰 
(𝝁𝑴) 

ρ FObj – PSO FObj – D.O 

500 2.0 346.74±73.63 465.65±8.70 -0.1929 158.0929 158.0927 

500 2.5 371.75±91.06 831.66±24.00 -0.4516 52.0058 52.0058 

500 2.7 603.49±445.07 767.36±28.29 -0.3634 45.6237 45.6237 

300 2.7 377.70±69.67 531.68±24.61 -0.5848 43.4028 43.4027 

Where, N is the agitation speed (in rpm); Qco is the specific gas flow rate (in vvm); kLa is the overall volumetric 

mass transfer coefficient with its confidence interval (in h-1);𝐶𝐶𝑂
𝑠 is the CO steady-state concentration with is 

confidence interval (in µM); CI is the confidence interval; ρ is the parametric correlation; FObj-PSO is the 

objective function minimum value obtained in PSO; and FObj-D.O is the objective function minimum value 

obtained through deterministic optimization. 

 

 The degrees of freedom for estimation can be determined as DF = NE∙NY-NP, where NE 

is the number of experiments conducted (duplicate, triplicate, etc.), NY is the number of measured 

dependent variables and NP is the number of parameters to be estimated (SCHWAAB and PINTO, 

2007). Generally, the statistical quality of parameter estimation enhances with the increase of its 

degrees of freedom (ALBERTON, 2013; SCHWAAB and PINTO, 2007). However, as it can be 
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seen in experiments conducted in triplicate and duplicate for pure distilled water at 500 rpm and 

2.7 vvm (Table V.12), the increase in degrees of freedom did not reduce parameter (kLa or 𝐶𝐶𝑂
𝑆 ) 

relative variance because one of the triplicates increased parameter uncertainty due to outliers in 

the measured values of dependent variables (Figure V.4A and B). The increase in experimental 

and parameter uncertainty is also reflected in the confidence interval, which decreased by 72% 

from triplicate to duplicate. 

 

Figure V.4 Model prediction for pure distilled water at 500 rpm and 2.7 vvm performed in triplicate (A) and 

duplicate (B).◊ represents the experimental data and * represents the sample mean. 

Table V.12 Comparison between experiments conducted in triplicate and duplicate for pure distilled water at 500 rpm 

and 2.7 vvm. 

 Triplicate pure distilled 

water at 500 rpm and 2.7 

vvm 

Duplicate pure distilled 

water at 500 rpm and 2.7 

vvm 

kLa±CI (h-1) 316.99±64.95 399.06±18.25 

𝑪𝑪𝑶 
𝒔 ± 𝑪𝑰 (𝝁𝑴) 738.76±4.64 743.27±3.62 

𝝆 -0.1626 -0.3616 

𝝈𝒌𝑳𝒂 𝒌𝑳𝒂⁄  0.0022 0.0001 

𝝈𝑪𝑪𝑶
𝒔 𝑪𝑪𝑶

𝒔⁄  0.0172 0.0096 

Where, kLa is the overall volumetric mass transfer coefficient (h-1); 𝐶𝐶𝑂
𝑠  is the steady-state carbon monoxide 

concentration (µM); ρ is the parametric correlation; 
𝜎𝑘𝐿𝑎

𝑘𝐿𝑎⁄  is the kLa relative variance; 
𝜎𝐶𝐶𝑂

𝑠

𝐶𝐶𝑂
𝑠⁄  is the 𝐶𝐶𝑂

𝑠  

relative variance. 
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It can be observed that all parametric correlation values are negative. Pearson’s correlation 

usually varies between -1 and 1, where -1 means a perfect negative correlation between two 

variables. Values closed to -1 or 1 represent a strong correlation between parameters, while a 

parametric correlation of zero would mean no parametric correlation at all (SCHWAAB and 

PINTO, 2007). All estimated parameter values presented a negative parametric correlation, 

indicating that kLa estimated values have influence in 𝐶𝐶𝑂
𝑠  parameter values, and the contrary is 

also valid. Negative correlation values means that as kLa values increase, 𝐶𝐶𝑂
𝑠 values would 

decrease. This behaviour is well described in confidence regions present in Figure V.5, Figure V.6 

and Figure V.7 (B). It is also possible to see how parametric correlation is visible in likelihood 

regions. For pure distilled water at 500 and 0.7 vvm, parametric correlation is -0.9198 and its 

likelihood region is thinner than likelihood region for pure distilled water at 500 rpm and 2.7 vvm 

(ρ = -0.3616). According to Figure V.6 for pure distilled water and 0.7 vvm kLa would assume 

values from 38 to 82.5 h-1 but due to high parametric correlation, each value will assume different 

carbon monoxide steady-state concentration.   

Figure V.7 illustrates the model adjustment (A) and likelihood region (B) for a distilled 

water, PFC and Tween® 80 mixture at 500 rpm and 2.7 vvm. Experimental uncertainty is high 

probably due to the mixture’s viscosity, gas bubbles and emulsion scanning in spectrophotometer. 

A higher standard deviation means a higher confidence interval, therefore the calculated value of 

445.07 h-1, which represents 74% of the kLa estimated value. Confidence region expressed in 

Figure V.5 (B) is very different from an elliptical confidence region, usually obtained for linear 

models. That is the main reason why elliptical confidence regions provide a poor approximation 

for non-linear model confidence region (SCHWAAB et al., 2008). The present likelihood region 

is non-convex and is unbounded since kLa does not have an upper limit due to model structure. 
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Bates and Watts (1998) discussed a similar mass transfer model for oxygen demand along time 

(used for aerobic systems) and observed that as kLa value increased, the exponential term would 

be zero, and therefore, oxygen concentration in the liquid phase would be equal to steady-state 

oxygen concentration. This likelihood confidence region behaviour was also observed for other 

conditions in distilled water, PFC and Tween® 80 mixtures. Therefore, it can be said that the 

model is unable to discriminate high values of kLa, especially for a distilled water, PFC and 

Tween® 80 mixtures at 500 rpm, 2.0 and 2.7 vvm 

 

 

Figure V.5 Likelihood regions (α = 90%) for pure distilled water 500 rpm and 2.7 vvm performed in triplicate (A) 

and duplicate (B) 
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.  

Figure V.6 Likelihood region (α = 90%) for pure distilled water at 500 rpm and 0.7 vvm. 

 

 

Figure V.7 Model prediction (A) and likelihood region (α=90%), (B) for distilled water, PFC and Tween® 80 

mixture at 500 rpm and 2.7 vvm.◊ represents the experimental data and * represents the sample mean. 
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CONCLUSION 

The present work successfully implemented the myoglobin-protein bioassay in laboratory 

and obtained carbon monoxide concentration in liquid phase using this method. Therefore, it is a 

good and cheap method for carbon monoxide determination in lab-scale in comparison to gas 

chromatography. It should be noted that care must be taken during the preparation of the complex 

oxygen-myoglobin solution so the myoglobin concentration in the test solution would be properly 

quantified. 

The highest kLa for carbon monoxide in water at 25 ºC was obtained in the present work, 

399.06 h-1 at 500 rpm and 2.7 vvm. PFC alone was not responsible for kLa increase due to poor 

mixing of perfluorodecalin in distilled water. Tween® 80 increased PFC dispersion in distilled 

water and reduced bubble size, increasing carbon monoxide mass transfer to the liquid phase. A 

kLa of 603.49 h-1 was achieved. This is the highest overall volumetric mass transfer obtained for 

stirred tank bioreactors so far. It was demonstrated that perfluorocarbons can enhance the 

volumetric mass transfer coefficient when well mixed with distilled water in the liquid phase. This 

mixture can be improved by using surfactants such as Tween® 80. PFCs have already been used 

in the presence of cells and can be an interesting way to enhance mass transfer in synthesis gas 

fermentation. 

Optimization was successfully performed and was a valuable tool to understand how 

experimental uncertainty impacted parameter uncertainty and parameter estimation. As far as we 

know, hybrid optimization and maximum likelihood were used for the first time to estimated 

carbon monoxide overall volumetric mas transfer coefficient and carbon monoxide steady-state 

concentration. The use of both methods increased the quality of the statistical analysis performed 

for the estimated parameter values. 
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RECOMMENDATIONS FOR FUTURE RESEARCH 

Although the present work opened a new approach for overall volumetric mass transfer 

coefficient estimation in bioreactors, some details still need to be analysed. This chapter proposes 

recommendations for future work in order to deep the mass transfer analysis initialized with this 

dissertation. 

 Determination of carbon monoxide concentration using Gas Chromatography to 

determine kLa and then evaluate myoglobin bioassay’s precision and accuracy. 

 Better evaluation of the mathematical model for kLa determination for carbon 

monoxide concentration. 

 Change impeller configuration in the bioreactor, using a down-pumping axial flow 

impeller at the top and a radial flow impeller at the bottom (Rushton-Type or Smith-

type) to see how it can affect kLa. 

 Determine gassed and ungassed power input for the systems described in this 

dissertation. 

 Determining dynamic viscosity and density for distilled water and PFC mixture, 

distilled water and Tween® 80 mixture and distilled water, PFC and Tween® 80 

mixture in order to better evaluate the bioreactor hydrodynamics for these systems. 

 Apply the same methodology used in the present dissertation to evaluate mass 

transfer in a hollow fiber membrane bioreactor.  
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APPENDIX 

This section include all graphic material obtained during parameter estimation of kLa and 

𝐶𝐶𝑂
𝑠  using a hybrid optimization strategy performed in MATLAB. 

A.1 – Pure distilled water at 25 ºC, 100 rpm and 0.7 vvm 

 

Figure A.1 Model prediction for pure distilled water at 25 ºC, 100 rpm and 0.7 vvm. 

 

Figure A.2 Confidence region (α=90%) for pure distilled water at 25 ºC, 100 rpm and 0.7 vvm. 
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A.2 – Pure distilled water at 25 ºC, 100 rpm and 1.3 vvm 

 

Figure A.3 Model prediction for pure distilled water at 25 ºC, 100 rpm and 1.3 vvm. 

 

 

Figure A.4 Confidence region (α=90%) for pure distilled water at 25 ºC, 100 rpm and 1.3 vvm. 
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A.3 – Pure distilled water at 25 ºC, 100 rpm and 2.7 vvm 

 

Figure A.5 Model prediction for pure distilled water at 25 ºC, 100 rpm and 2.7 vvm. 

 

 

Figure A.6 Confidence region (α=90%) for pure distilled water at 25 ºC, 100 rpm and 2.7 vvm. 
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A.4 – Pure distilled water at 25 ºC, 300 rpm and 0.7 vvm 

 

Figure A.7 Model prediction for pure distilled water at 25 ºC, 300 rpm and 0.7 vvm. 

 

 

Figure A.8 Confidence region (α=90%) for pure distilled water at 25 ºC, 300 rpm and 0.7 vvm. 
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A.5 – Pure distilled water at 25 ºC, 300 rpm and 1.3 vvm 

 

 

Figure A.9 Experimental data for pure distilled water at 25 ºC, 300 rpm and 1.3 vvm. 

 

 

Figure A.10 Confidence region (α=90%) for pure distilled water at 25 ºC, 300 rpm and 1.3 vvm. 
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A.6 – Pure distilled water at 25 ºC, 300 rpm and 2.7 vvm 

 

 

Figure A.11 Model prediction for pure distilled water at 25 ºC, 300 rpm and 2.7 vvm. 

 

 

Figure A.12 Confidence region (α=90%) for pure distilled water at 25 ºC, 300 rpm and 2.7 vvm. 
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A.7 – Pure distilled water at 25 ºC, 500 rpm and 0.7 vvm 

 

 

Figure A.13 Model prediction for pure distilled water at 25 ºC, 500 rpm and 0.7 vvm. 

 

 

Figure A.14 Confidence region (α=90%) for pure distilled water at 25 ºC, 500 rpm and 0.7 vvm. 

 



99 

A.8 – Pure distilled water at 25ºC, 500 rpm and 1.3 vvm 

 

 

Figure A.15 Model prediction for pure distilled water at 25 ºC, 500 rpm and 1.3 vvm. 

 

 

Figure A.16 Confidence region (α=90%) for pure distilled water at 25 ºC, 500 rpm and 1.3 vvm. 
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A.9 – Pure distilled water at 25ºC, 500 rpm and 2.0 vvm 

 

 

Figure A.17 Model prediction for pure distilled water at 25 ºC, 500 rpm and 2.0 vvm. 

 

 

Figure A.18 Confidence region (α=90%) for pure distilled water at 25 ºC, 500 rpm and 2.0 vvm. 
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A.10 – Pure distilled water at 25ºC, 500 rpm and 2.5 vvm 

 

 

Figure A.19 Model prediction for pure distilled water at 25 ºC, 500 rpm and 2.5 vvm. 

 

 

Figure A.20 Confidence region (α=90%) for pure distilled water at 25 ºC, 500 rpm and 2.5 vvm. 
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A.11 – Pure distilled water at 25ºC, 500 rpm and 2.7 vvm – triplicate 

 

 

Figure A.21 Model prediction for pure distilled water at 25 ºC, 100 rpm and 2.7 vvm, triplicate. 

 

 

Figure A.22 Confidence region (α=90%) for pure distilled water at 25 ºC, 100 rpm and 2.7 vvm, triplicate. 
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A.12 – Pure distilled water at 25ºC, 500 rpm and 2.7 vvm – duplicate 

 

 

Figure A.23  Model prediction for pure distilled water at 25 ºC, 100 rpm and 2.7 vvm, duplicate. 

 

 

Figure A.24 Confidence region (α=90%) for pure distilled water at 25 ºC, 100 rpm and 2.7 vvm, duplicate. 
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A.13 – Pure distilled water at 37 ºC, 300 rpm and 2.7 vvm 

 

 

Figure A.25 Model prediction for pure distilled water at 37 ºC, 300 rpm and 2.7 vvm. 

 

 

Figure A.26 Confidence region (α=90%) for pure distilled water at 37 ºC, 300 rpm and 2.7 vvm. 
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A.14 – Pure distilled water at 37ºC, 500 rpm and 2.7 vvm 

 

 

Figure A.27 Model prediction for pure distilled water at 37 ºC, 500 rpm and 2.7 vvm. 

 

 

Figure A.28 Confidence region (α=90%) for pure distilled water at 37 ºC, 500 rpm and 2.7 vvm. 
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A.15 – Distilled water and PFC mixture at 25ºC, 500 rpm and 2.0 vvm 

 

 

Figure A.29 Model prediction for distilled water and PFC mixture at 25 ºC, 500 rpm and 2.0 vvm. 

 

 

Figure A.30 Confidence region (α=90%) for distilled water and PFC mixture at 25 ºC, 500 rpm and 2.0 vvm. 
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A.16 – Distilled water and PFC mixture at 25ºC, 500 rpm and 2.5 vvm 

 

 

Figure A.31 Model prediction for distilled water and PFC mixture at 25 ºC, 500 rpm and 2.5 vvm. 

 

 

Figure A.32 Confidence region (α=90%) for distilled water and PFC mixture at 25 ºC, 500 rpm and 2.5 vvm. 
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A.17 – Distilled water and PFC mixture at 25ºC, 500 rpm and 2.7 vvm 

 

 

Figure A.33 Model prediction for distilled water and PFC mixture at 25 ºC, 500 rpm and 2.7 vvm. 

 

 

Figure A.34 Confidence region (α=90%) for distilled water and PFC mixture at 25 ºC, 500 rpm and 2.7 vvm. 

 



109 

A.18 – Distilled water and PFC mixture at 25ºC, 300 rpm and 2.7 vvm 

 

 

Figure A.35 Model prediction for distilled water and PFC mixture at 25 ºC, 300 rpm and 2.7 vvm. 

 

 

Figure A.36 Confidence region (α=90%) for distilled water and PFC mixture at 25 ºC, 300 rpm and 2.7 vvm. 
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A.19 – Distilled water and Tween® 80 mixture at 25ºC, 500 rpm and 2.0 vvm 

 

 

Figure A.37 Model prediction for distilled water and Tween® 80 mixture at 25 ºC, 500 rpm and 2.0 vvm. 

 

 

Figure A.38 Confidence region (α=90%) for distilled water and Tween® 80 mixture at 25 ºC, 500 rpm and 2.0 vvm. 
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A.20 – Distilled water and Tween® 80 mixture at 25ºC, 500 rpm and 2.5 vvm 

 

 

Figure A.39 Model prediction for distilled water and Tween® 80 mixture at 25 ºC, 500 rpm and 2.5 vvm. 

 

 

Figure A.40 Confidence region (α=90%) for distilled water and Tween® 80 mixture at 25 ºC, 500 rpm and 2.5 vvm. 
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A.21 – Distilled water and Tween® 80 mixture at 25ºC, 500 rpm and 2.7 vvm 

 

 

Figure A.41 Model prediction for distilled water and Tween® 80 mixture at 25 ºC, 500 rpm and 2.7 vvm. 

 

 

Figure A.42 Confidence region (α=90%) for distilled water and Tween® 80 mixture at 25 ºC, 500 rpm and 2.7 vvm. 
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A.22 – Distilled water and Tween® 80 mixture at 25ºC, 300 rpm and 2.7 vvm 

 

 

Figure A.43 Model prediction for distilled water and Tween® 80 mixture at 25 ºC, 300 rpm and 2.7 vvm. 

 

 

Figure A.44 Confidence region (α=90%) for distilled water and Tween® 80 mixture at 25 ºC, 300 rpm and 2.7 vvm. 
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A.23 – Distilled water, PFC and Tween® 80 mixture at 25ºC, 500 rpm and 2.0 vvm 

 

 

Figure A.45 Model prediction for distilled water, PFC and Tween® 80 mixture at 25 ºC, 500 rpm and 2.0 vvm. 

 

 

Figure A.46 Confidence region (α=90%) for distilled water, PFC and Tween® 80 mixture at 25 ºC, 500 rpm and 2.0 

vvm. 

 



115 

A.24 – Distilled water, PFC and Tween® 80 mixture at 25ºC, 500 rpm and 2.5 vvm 

 

 

Figure A.47 Model prediction for distilled water, PFC and Tween® 80 mixture at 25 ºC, 500 rpm and 2.5 vvm. 

 

 

Figure A.48 Confidence region (α=90%) for distilled water, PFC and Tween® 80 mixture at 25 ºC, 500 rpm and 2.5 

vvm. 
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A.25 – Distilled water, PFC and Tween® 80 mixture at 25ºC, 500 rpm and 2.7 vvm 

 

 

Figure A.49 Model prediction for distilled water, PFC and Tween® 80 mixture at 25 ºC, 500 rpm and 2.7 vvm. 

 

Figure A.50 Confidence region (α=90%) for distilled water, PFC and Tween® 80 mixture at 25 ºC, 500 rpm and 2.7 

vvm. 
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A.26 – Distilled water, PFC and Tween® 80 mixture at 25ºC, 300 rpm and 2.7 vvm 

 

 

Figure A.51 Model prediction for distilled water, PFC and Tween® 80 mixture at 25 ºC, 300 rpm and 2.7 vvm. 

 

 

Figure A.52 Confidence region (α=90%) for distilled water, PFC and Tween® 80 mixture at 25 ºC, 300 rpm and 2.7 

vvm. 

 


