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Resumo da Tese apresentada ao EPQB/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Doutor em Ciências (D.Sc.)

THERMODYNAMIC MODELING OF COMPRESSIBLE HYDRATES AND
CALCULATIONS OF MULTIPHASE EQUILIBRIUM DIAGRAMS

Iuri Soter Viana Segtovich

Novembro/2018

Orientadores: Frederico W. Tavares
Charlles R. de A. Abreu

Programa: Engenharia de Processos Químicos e Bioquímicos

Esta tese investiga a termodinâmica de equilíbrio de fases de hidratos.
As principais contribuições são o desenvolvimento de um novo modelo
termodinâmico para clatratos compressíveis e de um novo algoritmo para flash
multifásico incluindo fases sólidas.

Este trabalho estende o modelo original de van der Waals e Platteuw
para clatratos compressíveis dispensando a suposição de raio de cavidades
constantes. Os resultados obtidos com este modelo incluem: (i) um desvio
de pressão entre clatrato e estrutura não ocupada de referência, (ii) volume
molar dependente do ocupante, (iii) dilatação da rede induzida pela adsorção
sob aumento da pressão e (iv) equilíbrio isoestrutural com diferentes ocupâncias
e volume de rede. Essa abordagem não introduz novos parâmetros empíricos.
O modelo proposto apresenta características não relatadas na literatura, o que
pode auxiliar na compreensão de diferentes cenários de formação de hidratos e
projeto de processos.

O algoritmo para cálculos de equilíbrio multifásico proposto se baseia na
generalização das equações flash de Rachford e Rice e de análise de estabilidade
relacionadas à distância do plano tangente. Usando fatores K com múltiplas
referências, o algoritmo aceita considerar componentes excluídos de alguma
fase. As expressões reconhecem a modelagem de hidratos, em que fugacidade,
pressão e temperatura são variáveis de entrada, e a composição é calculada. A
generalidade deste algoritmo permite a geração de uma variedade de diagramas
de fase. Devido às simplificações no sistema de equações, esse algoritmo é mais
rápido e robusto do que a referência anteriormente proposta na literatura.
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Department: Chemical Engineering

This thesis investigates the thermodynamics of phase equilibrium of hy-
drates. The major contributions are the development of a new thermodynamic
model for compressible clathrates and of a new algorithm for multiphase flash
including solid phases.

This work extends the original van der Waals and Platteeuw model for
compressible clathrates by dispensing with the assumption of constant cages
radii. The results obtained with this model include: (i) a pressure shift between
the clathrate and the empty lattice reference, (ii) guest dependent molar vol-
ume of the lattice, (iii) swelling of the lattice under increasing pressure and (iv)
isostructural phase equilibrium with different cage occupancy and lattice vol-
ume. This approach introduces no empirical parameters. The proposed model
presents features not previously reported in the literature which can aid in un-
derstanding different scenarios of hydrate formation and processes design.

The algorithm for multiphase equilibrium calculations proposed is based
on the solution of a generalization of the flash equations from Rachford and Rice
and of stability analysis equations related to the the tangent plane distance crite-
ria. Using multi-reference K-values the algorithm handles components that are
excluded from phases. The expressions for K-values acknowledge hydrate mod-
eling where pressure, temperature and guest component fugacities are input
variables, from which composition is calculated. The generality of this algorithm
allows the generation of a variety of phase diagrams. Because of simplifications
in the system of equations, this algorithm is faster and more robust than the
reference previously proposed in the literature.
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Chapter 1

Introduction

Hydrates are solids first observed in laboratory experiments in 1810. These
solids are composed of water and molecular species commonly known as the
guest components. Some usual guest components are methane, ethane, propane,
carbon dioxide, hydrogen sulfide, and iso-butane. Hydrates may form at condi-
tions where water and at least one guest component are present. The formation
of hydrates is favored at conditions of low temperature and high pressure.

Research of hydrate science and technology has been primarily of interest
to the oil and natural gas processing industry since 1934 due to flow assur-
ance issues. However, more recently, there has been intense research on natural
reserves of methane hydrates and separation processes based on hydrate forma-
tion. As the production and processing of oil and gas operate with streams of
mixtures with several guest components and water, the occurrence of gas hy-
drates in pipelines is a common concern. As hydrates are solid phases, their
formation may cause pipeline blockage, if the particles are able to grow and ag-
glomerate. Consequently, risks of accidents and need of expensive remediation
measures arises.

Natural gas hydrates occurring in seafloor are a potential reserve of en-
ergy for some countries. These may occur at depths of 300-800 m in regions
where there has been historical accumulation of organic matter and activity of
methanogen bacteria, and also in continental areas in Russia.

Hydrate technology may be explored in separation processes involving wa-
ter or guest components as industrial gas purification or water desalination. In
the former, different affinities of different guest components to the hydrate phase
lead to a difference in the composition of the feed gas and of the dissociation
product. This can be explored in stages to accomplish a desired level of separa-
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tion. For the latter, the process is equivalent to a separation of water by freezing.
However, by using a hydrate promoter component, it is possible to achieve so-
lidification of the water into a hydrate phase at mild conditions of temperature
and pressure.

In 1949, microscopic investigation of hydrate systems has determined that
the hydrate phase is a crystalline solid composed of a water lattice and cages
which the molecules of the guest components can occupy. This allowed the
development of the original model of van der Waals and Platteeuw, in 1959,
as a successful application of statistical thermodynamics to phase equilibrium
calculations in an engineering context.

Hydrate phases having different crystalline structures exist, as structures
sI, sII and sH shown in Figure 1.1. Each structure differs in number and geometry
of the cages that compose it.

Figure 1.1: Clathrate hydrate cages and crystal structures sI, sII and sH (Source:
WARRIER et al., 2016).

1.1 General motivation

For the purpose of design or optimization of processes, it is desired to have
computational models to calculate thermodynamic properties and phase equi-
librium behavior of relevant streams. In special, the flow assurance research field
requires calculations of hydrates stability region, with respect to stream compo-
sitions and thermodynamic condition. In order to study the stability conditions
for hydrates, equilibrium thermodynamics provides basis for the modeling of
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properties and phase equilibrium.

1.1.1 Phase equilibrium behavior of hydrates

The standard scenario for discussing phase equilibrium behavior of hy-
drates is the three-phase equilibrium of a binary mixture between water and a
guest component from natural gas. In this scenario a gas phase rich in the guest
component, a liquid phase rich in water and the hydrate phase in a known struc-
ture are in equilibrium at a condition given by temperature and pressure along
an univariant line.

Upon reduction of temperature, an ice phase becomes more stable than
a liquid water phase, therefore there exists a four-phase coexistence condition,
named a quadruple point, where phase transition between ice and liquid water
takes place. Similarly, upon increase in pressure, the gas phase rich in guest com-
ponents become less stable than a phase with those in liquid condition, therefore
a second quadruple point exists, where phase transition for the condensation of
the phase rich in guest component takes place. Depending on the guest com-
ponent and on the range of temperature and pressure, a hydrate phase having
either one or other structure might be present at the stable equilibrium condi-
tion. In the case of a mixture of different guest components, there may exist a
region of coexistence of a liquid and a gas phase rich in the guest components
or a region of coexistence of hydrate phases in different structures.

The algorithm of PARRISH and PRAUSNITZ (1972) is the standard method
to calculate the incipient formation condition for scenarios where the guest com-
ponents are found stable in either a liquid or vapor phase, and each hydrate
structure can be tested separately. However, in order to handle the case of co-
existence of fluid phases rich in the guest components or of the coexistence of
hydrate phases in different structure the formalism of a multiphase flash algo-
rithm is necessary. Furthermore, where it is not possible to safely assume which
phases are present at the equilibrium condition, a stability analysis technique
is essential to solve the stable phase equilibrium problem. In order to be able
to calculate phase equilibrium involving hydrates in scenarios with different
number of phases and phases in different physical states, this thesis investigates
multiphase flash calculations, stability analysis and aspects of these type of cal-
culations involving hydrate phases.
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1.1.2 Thermodynamic model for hydrates

At first, the phase equilibrium calculations were based on empirical corre-
lations regressed to experimental data of temperature and pressure of formation
condition in the standard scenario for gas phases of different guest components.
After the original van der Waals and Platteeuw model was published, it became
the standard way of calculating thermodynamic properties of hydrates - chem-
ical potentials, in special. From those calculations, phase equilibrium criteria
could be solved rigorously using an appropriate algorithm.

1.1.3 High pressure environments

For high pressure conditions as in production of natural gas from deep
sea floor hydrate layers or in flow assurance in deepwater oil fields, additional
challenges become noticeable. Regarding modeling, it has been observed that
the standard van der Waals and Platteeuw model calculations accuracy is not
satisfactory. This inadequacy is atributed to compressibility of clathrates and
distortion of cages in such conditions. As for algorithm adequacy, regions of co-
existence and transition of stable hydrate phases in different structures require
use of the multiphase flash and stability analysis formalism noted before. The
works of Ballard and collaborators (BALLARD, 2004; BALLARD and SLOAN
JR., 2004, 2002) are a milestone in both thermodynamic modeling and algorithm
areas. During the study of hydrate phase equilibria at high pressure in this the-
sis, a thermodynamic inconsistency became apparent. In order to propose an
improved model for hydrates at high pressure, considering the compressibility
of lattices and consequent distortion of cages, this thesis investigates the assump-
tions of the original van der Waals and Platteeuw model and the derivations of
expressions for thermodynamic properties from the model.

1.2 Objectives

The general goal of this thesis is investigating hydrate systems with respect
to calculation of thermodynamic properties, phase equilibrium and kinetics of
formation. Specifically, this thesis puts effort into the following aspects of hy-
drate formation:

• fundamentals of statistical thermodynamics needed to derive a thermo-
dynamic model for a clathrate solution and the assumptions made in the
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original van der Waals and Platteeuw model,

• propose a thermodynamically consistent extension to contemplate com-
pressible clathrates,

• phase equilibrium algorithm and aspects of these type of calculations in-
volving multiple phases including hydrate phases,

• the fundamentals of stability analysis and application to phase equilibrium
including hydrate phases.

1.3 Contributions

The main contributions of this thesis are primarily to hydrate science and
engineering. Nevertheless, some aspects of the phase equilibrium algorithm and
specially of the compressible clathrate model are also applicable to other systems
such as in adsorption science and engineering. Specifically, this thesis brings the
following contributions from its development and results:

• A multiphase equilibrium algorithm with simultaneous stability analysis
for systems involving hydrates, and which constitute an improvement over
the works in the literature (BALLARD and SLOAN JR. (2004)).

– The decoupling of generalizations of the Rachford and Rice equations
from the stability analysis equations makes this algorithm faster and
more robust than the reference work because it involves solution of a
system of approximately half the number of equations, and with an
issue of singularity at incipient condition calculations solved analyti-
cally.

– Using multi-reference K-values the algorithm handles components
that are assumed excluded from one or more phases.

– The expressions for the updating of composition and fugacities ac-
knowledge hydrate phases being modeled with the van der Waals and
Platteeuw model, where pressure, temperature and guest component
fugacities are input variables, from which composition and fugacities
are calculated.

The algorithm developed in this thesis and a discussion on phase diagram
behavior of hydrate systems generated with this algorithm have been pub-
lished on Fluid Phase Equilibria, (SEGTOVICH et al., 2016a,b).
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• A thermodynamic model for compressible clathrates which was derived
here making a modification in the partition function and which constitute
a new model with features not present in the previous literature.

– phase equilibrium calculations pass a test based on the Clapeyron
equation showing the model is thermodynamically consistent,

– a pressure shift between the clathrate and the empty lattice isochoric
reference,

– varying water basis lattice volume for clathrates of different types of
guest at the same temperature and pressure,

– swelling of the hydrate lattice in equilibrium with a gas phase under
increasing pressure,

– isostructural phase equilibrium involving hydrate phases with differ-
ent cage occupancy and water basis lattice volume,

– this approach introduces no empirical parameters.

The model developed in this thesis was presented at the XI Iberoamerican
conference on phase equilibria and fluid properties for process design -
EQUIFASE-2018 (SEGTOVICH et al., 2018).

1.4 Structure of the text

A review on thermodynamic modeling and phase equilibrium of gas hy-
drates is presented on Chapter 2. Then this thesis describes the development
of an algorithm for phase equilibrium calculations specifically suited to hydrate
systems, also investigating limitations and proposing improvements and exten-
sions. These are discussed in Chapters 4 and 5, and Appendix A. After, this
thesis describes the thermodynamic modeling of hydrates, based on the original
model of van der Waals and Platteeuw, investigating limitations and proposing
improvements and extensions. These are discussed in Chapters 3, 6 and 7, and
Appendix B and C.
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Chapter 2

Literature review

This chapter presents a review on thermodynamic modeling and phase
equilibrium of gas hydrates. This text shows the advancements of methods for
calculating hydrate formation condition starting from the empirical methods, to
the thermodynamic method based on the van der Waals and Platteeuw model,
to aspects of phase equilibrium and stability analysis using the thermodynamic
modeling, the modifications and extensions to the van der Waals and Platteeuw
model and establishing the state-of-the art in clathrate modeling.

2.1 Empirical correlations

The earliest method for predicting the formation of natural gas hydrates are
the K-values method of WILCOX et al. (1941). The method uses correlations for
K-values, which represent the ratio between dry basis mole fraction of the feed
gas and the hydrate as a function of temperature and pressure. The calculation
of formation condition for hydrates is analogous to calculation of dew point
calculations according to Eq. 2.1.

1−∑
i

(
yi

Ki(T, P)

)
= 0 (2.1)

where y is the vector of composition for the vapor phase and K is the vector
of distribution coefficients for each component between the vapor and hydrate
phases for a given temperature (T) and pressure (P).
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2.2 Statistical thermodynamics and the van der

Waals and Platteeuw model

Between the years of 1949 and 1952, experimental determination of the
crystal structure of hydrates and the classification of these phases as clathrates
was achieved. With this knowledge, VAN DER WAALS and PLATTEEUW (1959)
developed a model based on statistical thermodynamics. In their model the
chemical potential of water in the clathrate phase is expressed with respect to the
theoretical empty lattice condition as a function of the cage occupancy according
to Eq. 2.2.

∆µH−EL
w = R T ln

(
∏

j

((
1−∑

i

(
Θij
))νj

))
(2.2)

where ∆µH−EL
w is the change in chemical potential for water between the con-

ditions of hydrate and empty lattice, Θ is the cage occupancy matrix for each
species in each cage, R is the ideal gas constant and ν is the ratio between num-
ber of cages of each type and the number of water molecules in a hydrate unit
cell for a given structure.

The cage occupancy is calculated analogously to the Langmuir adsorp-
tion theory from the fugacity of the guest component and an affinity coefficient
named the Langmuir coefficients according to Eq. 2.3. The coefficients are cal-
culated from the cell theory of LENNARD-JONES and DEVONSHIRE (1937) as
a functional of the potential energy model for a guest component particle inside
a cage.

Θij =
Cij f̂i

1 + ∑
k

(
Ckj f̂k

) (2.3)

where C is the matrix of Langmuir coefficients and f̂ is the fugacity of each
guest component.

2.3 Phase equilibria algorithms

Analysis of degrees of freedom in thermodynamic systems, flash calcula-
tions and stability analysis are fundamental in the derivation and discussion of
this work. Some key aspects of these topics are covered here.
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2.3.1 Degrees of freedom in thermodynamic systems

The number of degrees of freedom required in order to determine all the
thermodynamic intensive variables that characterize each phase as pressure (P),
temperature (T), and composition (x) of a multiphase system in the state of
equilibrium, is given by the Gibbs phase rule (Eq. 2.4) for a non-reacting system
of nc components and nf phases.

νGibbs = nc − nf + 2 (2.4)

In order to additionally determine the relative amount of matter between
these phases, nf − 1 new independent variables, β , together with nc − 1 mass
balance equations (Eq. 2.5) are included.

∑
j

(
β j xij

)
= zi (2.5)

Consequently, having specified global composition (z), the remaining num-
ber of degrees of freedom is given by the Duhem theorem (Eq. 2.6).

νDuhem = 2 (2.6)

However, if νGibbs is lower than νDuhem, being equal to 1 or to 0, then,
respectively, the thermodynamic system is denominated univariant or invari-
ant, and 1 or 2 degrees of freedom must be necessarily satisfied by specifying
variables also from the multiphase system scope set, as β or z. Or else the math-
ematical system will have infinitely many solutions for these variables which
characterizes an ill posed problem type denominated indifferent (O’CONNELL
and HAILE, 2005).

2.3.2 Algorithm for hydrate formation condition

PARRISH and PRAUSNITZ (1972) developed an iterative scheme for cal-
culating pressure of formation condition using the model of van der Waals and
Platteeuw. Their work received outstanding recognition in the literature for pro-
viding a clear and reliable algorithm for phase equilibria of hydrate of a given
structure, ice or an liquid aqueous solution, and gas rich in hydrate forming
components (H-Aq-V).
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Alternatively, NG and ROBINSON (1977) used the Clapeyron equation to
relate the slope of the univariant equilibrium curve to changes in volume and
enthalpy of hydrate formation according to Eq. 2.7.

(
∂P
∂T

)
uni

=
∆Huni

T ∆Vuni
(2.7)

where ∆Huni is the heat of dissociation for 1 mol of hydrate and ∆Vuni is the
change in volume on dissociation of 1 mol of hydrate along the univariant phase
equilibrium line.

The Clapeyron equation is an exact relation for univariant phase equilibria
and, in the present work, it helped in the assessment of the consistency of the
models and algorithms considered.

2.4 Thermodynamic modeling for a multiphase sys-

tem

For application in phase equilibrium calculations, the chemical potential of
water in the empty lattice condition is calculates with reference to the pure water
in the stable condition, i.e. water or ice. This calculation is based on classical
thermodynamics expression and values for formation properties according to
Eq. 2.8.

d

(
µH−ref

w
R T

)
=

(
−HH−ref

R T2

)
dT +

(
VH−ref

R T

)
dP (2.8)

where µH−ref
w , HH−ref and VH−ref are differences in chemical potential of water,

molar enthalpy and molar volume between the hydrate phase and an arbitrary
reference condition, respectively.

For applications in phase equilibrium calculations, the clathrate modeling
framework is combined with fluid phase equations of state and condensed phase
thermodynamic modeling for calculations of fugacity and this modeling set can
be understood as shown in Figure 2.1. Each block therein represents a physical
condition and each ∆µ expression corresponds to an arrow linking two of these
blocks. Fugacities are equivalent to calculations of ∆µ with reference to the pure
ideal gas reference condition.
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Figure 2.1: Model framework for hydrate phase equilibrium calculations. Each
arrow corresponds to a calculation of chemical potential difference (∆µ) for wa-
ter (w) or a guest component (i) between two physical states. Pw stands for
pure water, EL stands for empty lattice, H stands for hydrate, pIG stands for
pure ideal gas, V stands for vapor, and I stands for conventional ice. The chem-
ical potential difference of a given component in a given condition with respect
to the pure ideal gas reference is given by means of its fugacity ( f̂ )

Furthermore if an aqueous solution is to be considered, it is necessary to
express the chemical potential of pure water (Pw) with respect to the aqueous
solution (Aq), which is conveniently done using activity coefficients (γ) from an
excess Gibbs energy model according to Eq. 2.9.

∆µ
Aq−Pw
i = R T ln (γi xi) (2.9)

In order to calculate phase equilibria without liquid water or ice present, it
is necessary to calculate the chemical potential of water in the lattice with respect
to the gas phase.

Fugacity is a measure of chemical potential with reference to the pure ideal
gas state, thus it is a convenient measure for the calculation of H-V equilibria.
In this spirit, SLOAN JR. et al. (1976) and NG and ROBINSON (1980) described
the fugacity of water in the empty lattice (Eq. 2.10) based on an empirical cor-
relation for the saturation pressure of a metastable EL-Vw equilibria, where the
parameters of this correlation were obtained from actual hydrate formation data
for each structure:

f̂ EL
w = Psat

w φ̂sat
w

∫ P

P0

(
VEL

w
R T

)
dP (2.10)

where f̂ EL
w is the fugacity of water in the empty lattice condition, Psat

w refers to
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the saturation pressure of the metastable phase equilibria between the empty
lattice and pure water in vapor state (EL-Vw), and φ̂sat

w is the fugacity coefficient
of water in Vw condition at the saturation condition, at temperature T.

Alternatively, BALLARD and SLOAN JR. (2002) proposed to describe the
chemical potential of hydrate using formation properties, as in Eq. 2.8, but with
direct reference to the pure ideal gas state.

Finally, in order to calculate phase equilibria in mixtures where fluid
phases rich in the guest components in liquid (Lnp) or vapor (V) phases co-
exist, or where hydrate phases in different structure coexist, the formalism of a
multiphase flash algorithm is required.

2.4.1 Flash calculations

Flash calculations allow the determination of all intensive variables in a
system having the specification of global composition and of two independent
intensive variables, provided adequate thermodynamic models for each phase
under consideration. In the PT-flash , temperature, pressure and global com-
position are defined, and the solution corresponds to individual phase compo-
sitions and relative amount of phases that correspond to the global minimum
in Gibbs Energy of the multiphase system as necessary and sufficient condi-
tion for equilibrium (TESTER and MODELL, 1997a). The mathematical problem
can then be faced as an optimization problem that can be tackled by a variety
of mathematical and numerical methods. The most widely known method for
flash calculations is the method of RACHFORD JR. and RICE (1952) for liquid
vapor equilibria, centered on solving Eq. 2.11.

∑
i

(
zi (Ki − 1)

1 + β (Ki − 1)

)
= 0 (2.11)

where z is the global composition and β is the relative amount of vapor in the
system.

BISHNOI et al. (1989) and BALLARD and SLOAN JR. (2004) proposed ad-
vanced algorithms for flash calculations to describe systems presenting hydrates
beyond formation condition. Their works were based on Gibbs energy mini-
mization restricted to non-negative phase amount variables.
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2.4.2 Stability analysis

When the method for solving phase equilibrium focus on derived necessary
conditions for equilibrium, stability analyses are required as tools to assess if
the sufficient condition for equilibrium is met at the solution calculated with the
chosen approach.

The stability analysis method discussed by MICHELSEN (1982) presents
the so-called tangent plane distance (TPD) given by Eq. 2.12. This quantity
is associated with the change in Gibbs energy for the creation of an incipient
phase with a given composition via the consumption of a small amount of a
phase present in the system. In this sense, if the Gibbs energy decreases, it
means a new phase with that composition could form spontaneously from the
system under consideration, and a multiphase flash considering an additional
phase with this composition as initial guess is required.

TPD = ∑
i

(
xi
(
µij(x)− µir(z)

))
(2.12)

where µij and µir are the chemical potential of the species i in the test phase and
in the reference phase of the system under analysis, with composition given by
x and z, respectively.

The method consists on solving an optimization problem in order to find
a stationary point of the tangent plane distance (TPD∗) with respect to the test
phase composition (x).

Independently, the multiphase flash method of BISHNOI et al. (1989) and
BALLARD and SLOAN JR. (2004) presents a so called stability variable (θ, Eq.
2.13). This variable is associated with the ratio of fugacity of any component
between a given phase and a reference phase in the system under analysis.

θj = ln

(
f̂ij

f̂ir

)
for i in 1 to nc (2.13)

where the value of the phase stability variable θj, defined for each phase, in the
solution of the phase stability problem dictates the ratio of fugacities f̂ij for all
of the components split among that (j) phase and the reference (r) phase.

This variable has value of zero if the phase is present at equilibrium, either
as a bulk or as an incipient phase. And it has a positive value if the chemical
potential of components in that phase is higher than in the reference case. In
such case, the consumption of an infinitesimal quantity of components in the
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reference phase, for the creation of an infinitesimal quantity of this phase would
increase the global molar Gibbs energy. This solution corresponds to a positive
minimum in the TPD, and characterizes a so-called shadow phase, according to
the notation from Michelsen. Oppositely, if it has a negative value, this phase
would appear spontaneously and, the system is said thermodynamically unsta-
ble. In this case, these phase properties would constitute a suitable initial guess
for a flash calculation including this phase in addition to previously considered
phases.

Additionally, the expression thermodynamically stable is used to character-
ize a system for which the solution for the variables associated with each of its
phases meets the sufficient conditions for equilibrium, consistently with given
specifications. While each phase is classified either as present or not present at
equilibrium.

In the present work, an algorithm based on the latter approach is derived.
Here, it is observed that the stability variable from this approach corresponds to
the dimensionless stationary tangent plane distance (TPD) of Michelsen.

2.5 Modifications and extensions for variations in

the lattice volume

The modification and extensions that have been proposed since the pub-
lication of the original van der Waals and Platteeuw model concern either the
calculation of the chemical potential of the lattice with respect to a suitable ref-
erence or the calculations of Langmuir coefficients.

In the original van der Waals and Platteeuw model, the specific volume of
the lattice and cage radii are assumed constant. Based on the experimental data
of TSE (1987) and of HIRAI et al. (2000b), KLAUDA and SANDLER (2000) have
used a correlation for the specific volume of the lattice as function of tempera-
ture and pressure. More recently, MEDEIROS et al. (2018) report an improved
correlation for the specific volume of the lattice as function of temperature and
pressure based on the experimental data of KLAPPROTH et al. (2003) and SH-
PAKOV et al. (1998).

In order to predict changes in the lattice molar volume of the empty lattice
and of hydrates of different guests, BELOSLUDOV et al. (2002) performed calcu-
lations of the free energy of the crystal within the framework of lattice dynamics in
the quasi harmonic approximation. When comparing the calculations for the empty
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lattice with those for actual hydrates, the authors observed what was called an
effective pressure, the pressure of the empty lattice whose molar volume would be
the same as for the actual hydrate molar volume in water basis.

Values for formation properties of the empty lattice reported by varying
authors differ significantly because they refer to the theoretical empty lattice
and, are determined indirectly by means of regression to actual hydrate phase
equilibria (HOLDER et al., 1988).

In an attempt to find reliable values for formation properties for the empty
lattice, HANDA and TSE (1986) determined formation properties for Kr and
Xe under the hypothesis the structure determined for those small monoatomic
species would correspond to a non distorted empty lattice structure.

Several works seek to compensate for deviations in the calculations due to
distortion of the lattice using guest-dependent empty lattice expressions.

Assuming that for different guest components, the empty lattice would
have different specific volume and therefore different values for formation prop-
erties, ZELE et al. (1999) and LEE and HOLDER (2002) determined these values
independently for several guest components. Similarly, KLAUDA and SAN-
DLER (2000) performed regression of the saturation pressure of the metastable
EL-Vw equilibria. In this approach, it is said that the formation properties or
saturation pressure involved in the determination of the chemical potential of
water in the empty lattice are those of the distorted lattice for each component.
This allowed for a better representation of the available data, however at the ex-
pense of independent parameters for each guest component and with no direct
extension for mixed guest hydrates.

From both experiment (IKEDA et al., 2000) and molecular dynamics
(HWANG et al., 1993), it is shown that the unit cell parameter has a different
equilibrium value for different kinds of guests.

According to the cell theory, the Langmuir coefficients depend on the cage
radii. Considering that changes in the specific volume of the hydrate might af-
fect these dimensions, BALLARD and SLOAN JR. (2002) propose the inclusion
of this dependency using a proportionality relation. Additionally, the authors
have observed variation in the specific volume of the lattice as large as 3% due
to varying guest components. They have used this information empirically in an
additional term as function of the proportion of guest components in a correla-
tion for specific volume of the lattice. Similarly, HSIEH et al. (2012) used a cor-
relation for Langmuir coefficients depending on the volume of the cages, which
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was empirically dependent on pressure. This method, using parameters fitted to
hydrate phase equilibrium data allowed improved representation of data at high
pressure at the expense of independent parameters for each guest component
and each type of cage of each structure and, still with no direct extension for
mixed guest hydrates.

Furthermore, this thesis shows that the approach followed by these authors
led to phase equilibrium calculations of single or mixed guest hydrates having a
thermodynamic inconsistency.

2.6 Negative apparent compressibility

Although a pressure increase would induce a solid matrix into shrinking,
in an adsorption system it would also favor the adsorption of more guest par-
ticles. On its turn, the increase in adsorbed quantity may induce an expansion
of the matrix. The result of this swelling is an apparent negative compress-
ibility of the adsorption system. This phenomenon has been observed in the
work of ROZSA and STROBEL (2014) with β-hydroquinone clathrates of hy-
drogen. There, the authors analyzed the lattice compressibility of the hydrogen
clathrates under conditions of varying cage occupancy. According to them, the
total unit cell volume of the clathrate increased with an increase in pressure,
in the range between 2.4 and 3.0 MPa. Furthermore, anisotropy was observed
for the measurements on this material, one of the two characteristic dimensions
showed negative apparent linear compressibility over the note range for pres-
sure, while the other showed positive apparent linear compressibility, with the
net effect being of negative apparent volumetric compressibility. The authors
noted the change in compressibility matches the onset of hydrogen triple occu-
pancy of the β-hydroquinone clathrates. From those observation, it can noted
that experimental investigation is needed in order to see whether those proper-
ties are present in other clathrate compounds such as hydrates and, whether it
is the triple occupancy onset is the responsible for negative compressibility.

2.7 Isostructural phase equilibrium

Experimental observations of HIRAI et al. (2000a,b) have shown a change in
compressibility of the hydrate phase occurred between 0.7 and 1.5 GPa, although
the fundamental crystal structure (sI) of the methane hydrate was maintained up
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to 2.3 GPa. They have observed that the cage occupancy for one type of cages to
drop from near 90% to nothing on this transition. According to the authors, the
results were not conclusive in strictly determining whether the observed result
is stable or metastable behavior. In any case, the measurement of a thermody-
namic metastable state, as opposed to kinetically stable states, is of interest to
the development and validation of thermodynamic models modeling through
correspondence with local minima in Gibbs energy.

In experiments with differential scanning calorimetry, LAFOND et al.
(2015) observed anomalous melting behavior for clathrate hydrates of Xe. Ac-
cording to the authors, multiple dissociation events were observed, suggesting
that more than one hydrate phase was present. However, crystallography ex-
periments only showed one type of crystal structure. The lack of other crystal
structures could be an indication of coexistence of different solid phases having
the same crystal structure. The authors believe that these phases have different
cage occupancy and that this behavior might be explained by strong interdepen-
dency between cage occupancy and Langmuir coefficients.

Nonetheless, it has already been shown that metal-organic frameworks can
undergo isostructural phase transitions: ZHOU et al. (2014) showed that a given
metal-organic framework presented negative compressibility together with an
unexpected phase transition between phases with the same crystal structure.

2.8 Final remarks

As far as we could tell from current literature, there is no thermodynamic
model in the classical thermodynamic equation of state scale that can explain
or predict the observations regarding lattice volume changes for hydrates of
different guests, effective pressure of hydrates of different guests with respect
to an empty lattice, negative apparent compressibility and iso-structural phase
equilibrium.
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Chapter 3

Thermodynamic modeling of gas
hydrates

Here, we present the van der Waals and Platteeuw model and the sup-
porting models required in the clathrate modeling framework for calculations of
thermodynamic properties and phase equilibrium. Detailed derivations for the
expressions presented here are given in Appendix A, and the parameterization
used in the work is given in Appendix B, for reproducibility purposes.

3.1 The van der Waals and Platteeuw basic principles

The original van der Waals and Platteeuw (1959) model is constructed us-
ing a partition function for a clathrate phase based on the following assumptions.

1. The hydrate is a solid mixture that can be described by the number of
water molecules (Nw) and the number of the so-called guest components
(Ng

i ) molecules of a few types (ng), temperature T and volume VH of the
phase.

2. There is an a priori description of a lattice of water molecules depending
on just the same temperature T, having equal volume (VEL = VH) and
equal number of water molecules (Nw), containing Nc

j identical cages of a
few types (nc).

3. A guest molecule is always located inside some cage, while one individual
cage can never hold more than one guest molecule simultaneously.

18



With these premises, they devise a partition function in the canonical
ensemble and, for convenience in dealing with phase equilibrium calculation,
transform that into a semi-grand canonical partition function.

3.2 The partition function

The semi-grand canonical partition function (Ξ) represents an ensemble
contemplating varying number (Nij) of particles of each guest component (i) in
each cage type (j) for a given chemical potential for each guest component (µi),
a given number of water molecules (Nw) a given temperature (T) and a given
phase volume (V). It is expressed as

ln (Ξ) = ln
(

QEL
)
+ ∑

j

(
νj Nw ln

(
∑

i

(
qij λi + 1

)))
(3.1)

where the proportionality factors (ν) relate the number of cages of each type
and the number of water molecules in the hydrate phase and depends solely on
the a priori described geometry of the lattice. And (λ) are the so-called absolute
activity, defined for each guest component in the hydrate phase from its chemical
potential (µi), temperature (T) and Boltzmann constant kB by

µi = kB T ln (λi) (3.2)

Here, QEL is the canonical partition function describing the pure water
empty lattice, by its temperature, volume and number of water molecules (Sec-
tion 3.3), and qij is the single molecule canonical partition function under the
mean field cage potential (Section 3.4).

The semi-grand-canonical partition function is associated with the thermo-
dynamic potential we denote by Ψ, resulting from the Legendre transform of
Helmholtz energy (A) switching each Ng

i for the corresponding µi as done in
the transformation of the partition function from the canonical to semi-grand-
canonical ensemble under its own formalism. Therefore, these thermodynamic
potentials are related with each other and with the partition function by

Ψ =

(
A−∑

i

(
Ng

i µi
))

= (−kB T ln (Ξ)) (3.3)
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3.3 The empty lattice reference

The van der Waals and Platteeuw model is applied to phase equilibrium
calculation at varying T and P by describing the empty lattice Helmholtz energy
from theoretical formation properties with respect to a reference condition of
the host molecule. The reference condition is usually the spontaneously stable
condition at given temperature and pressure. In this section, the reference con-
sidered is the pure liquid water. The canonical partition functions are related to
Helmholtz energy by(

AEL
)
=
(
−kB T ln

(
QEL

))
(3.4)

where its differentials, from classical thermodynamics are

dAEL = −SELdT − PdVEL + µEL
w dNw (3.5)

from which it can be shown that

d
(

AEL

kBT

)
= − UEL

kBT2 dT − PEL

kBT
dVEL +

µEL
w

kBT
dNw (3.6)

From these, derived properties as chemical potential, internal energy and
pressure can be calculated from the partition function by

µEL
w = kB T

∂ AEL

kB T

∂Nw


T,VEL

(3.7)

UEL = −kB T2

∂ AEL

kB T

∂T


VEL,Nw

(3.8)

and

PEL = −kB T

 ∂ AEL

kB T

∂VEL


T,Nw

(3.9)

These expressions are crucial for the symbolic derivations conducted here,
as the canonical partition function for the empty lattice has precisely T, VEL

and Nw as independent variables. On the other hand, for numerical applica-
tions described by pressure instead of volume, it is most convenient to express
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the chemical potential from the molar Gibbs energy as function of temperature,
pressure and number of moles. This chemical potential is expressed not from
an actual empty lattice partition function model but rather as ∆µEL−Pw

w , with
reference to pure liquid water at P0. This relative chemical potential at any T
and P is described by ∆µEL−Pw

w,T0,P0
, a chemical potential difference at T0 and P0, and

a correlation for the molar volume VEL of the pure water lattice as function of
T and P, and for relative enthalpy ∆HEL−Pw

w,P0
, the latter also with respect to pure

liquid water at P0. The resulting expression is

∆µEL−PW

RT
=

∆µEL−PW
00
RT0

−
∫ T

T0

∆H̄EL−PW
0
RT2 dT +

∫ P

P0

V̄EL

RT
dP (3.10)

where the superscript EL− Pw indicates is a difference between empty lattice
and the pure liquid water reference. We also note that our equation express the
difference in chemical potential for the host molecule at given T, P and Nw in
lattice condition to a reference condition at a standard pressure P0, we find this
more convenient because then we deal separately with expressions for molar
volume of empty lattice here, and of the reference phase elsewhere depending
on application.

3.4 Cell theory and the Langmuir coefficients

In order to describe the partition function for a single enclathrated molecule
under the mean field cage potential (qij), additional considerations are necessary
(VAN DER WAALS and PLATTEEUW, 1959).

4. Internal degrees of freedom of that guest molecule, are equivalent to those
of particles it in the ideal gas state,

5. Translation inside the cage is subject to an mean field water-guest potential
based on the approximation of Lennard-Jones and Devonshire.

From those assumptions, qij is given by a product of a term for internal
degrees of freedom configurational integral and thermal wavelength, and a term
for a configurational integral for the free volume as in

qij = Φi

∫ R

0

[
exp

(−wij

kBT

)
4πr2

]
dr (3.11)
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The factor Φi represents the configurational integral for internal degrees of
freedom (as rotation and vibration) and particle momentum (thermal de Broglie
wavelength), which is specific per component and solely a function of tempera-
ture. While the free volume integral is evaluated for the mean field cage potential
wij along radial coordinate r in the domain of a cell of radius Rj. Also, the ex-
pression for wij itself depends on the radius Rj and coordination number Zj of
the cell, and on the nature of the guests, in terms of an effective intermolecular
interaction potential. In addition, it is useful to relate absolute activity (λ) to
fugacity ( f̂ ) using the ideal gas partition function as a reference as in

f̂i = λikBTΦi (3.12)

This expression carries that same factor (Φi), in accordance with assump-
tion 4.

Then, Langmuir coefficients (Cij) are defined from

qijλi = Cij f̂i (3.13)

so that derived properties expressions can be rewritten in terms of finite Cij and
f̂i, instead of uncomputable absolute qij and λi, for practical phase equilibrium
calculations. We can calculate from the free volume integral, for numerical cal-
culations, as in

Cij =

∫ R
0

[
exp

(−wij
kBT

)
4πr2

]
dr

kBT
(3.14)

where the factor (Φi) from Eq. (3.11) and Eq. (3.12) cancel out.

We can express qij from Cij, for convenient symbolic calculations as in

qij = kBTΦCij (3.15)

We use the cage potential wij derived from the Kihara pair interaction po-
tential. This cage potential forbids the particle from being closer to the cage
boundary by less than a hard-core interaction parameter ai, thus Eq. 3.14 imple-
mentation has this information as (Rj − ai) built into its upper limit of integra-
tion (PRATT et al., 2001).

The resulting expression for wij is given by MCKOY and SINANOĞLU
(1963); PARRISH and PRAUSNITZ (1972); VAN DER WAALS and PLATTEEUW
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(1959)

D1 =
ai

Rj
(3.16a)

D2 = 1− r
Rj
− D1 (3.16b)

D3 = 1 +
r

Rj
− D1 (3.16c)

DEL(i) =
D2−i − D3−i

i
(3.16d)

R1 =
σ12

i
R11

j
(3.16e)

R2 =
σ6

i
R5

j
(3.16f)

S1 = DEL(10) + D1 DEL(11) (3.16g)

S2 = DEL(4) + D1 DEL(5) (3.16h)

wij =
2 Zj εi (R1 S1− R2 S2)

r
(3.16i)

where ai, σi and εi are the parameters from the Kihara pair interaction poten-
tial of guest component (i) and a water molecule from the lattice. The mono-
spaced symbols used here represent non physically meaningful quantities used
for breaking equations into smaller terms.

3.5 Derived properties from the semi-grand-

canonical partition function

The hydrate thermodynamic potential is related to Helmholtz energy by
Eq. (3.3) and therefore it can be shown that its differential form, from classical
thermodynamics is

d
Ψ

kBT
= − U

kBT2 dT − P
kBT

dV +
µw
kBT

dNw −∑
i
[Nid ln (λi)] (3.17)

We now proceed to obtain derived properties, specifically relations of guest
amount, pressure, chemical potential of water, internal energy and enthalpy.
These will have dependencies on empty lattice or ideal gas properties, the refer-
ences we are carrying.
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Inspecting Eq. (3.17), one can relate the number of guest molecules with
the partition function

Ni = −
(

∂ Ψ
kBT

∂ ln (λi)

)
T,V,Nw,λ 6=i

(3.18)

which can be further decomposed into number of guests per cage type Nij,
whose total must recuperate Ni according to

Ni = ∑
j

[
Nij
]

(3.19)

The number of molecules Nij for each guest type in each cage type is,
therefore, given by

Nij = νjNw
qijλi

∑i
[
qijλi

]
+ 1

(3.20)

from which it is now convenient to define the occupancy fraction (Θij) of type j
cages by molecules of type i as

Θij = Nij/Nw =
qijλi

∑k
[
qkjλk

]
+ 1

=
Cij fi

∑k
[
Ckj fk

]
+ 1

(3.21)

and composition can be calculated, for each component i in the guest compo-
nents list g and for water w using

xi =

∑
j

(
νjΘi,j

)
1 + ∑

j

(
∑
k

(
νjΘk,j

)) (3.22)

and

xw = 1− ∑
i in g

(xi) (3.23)

The chemical potential of water is related to the partition function accord-
ing to

µw = kBT

(
∂ Ψ

kBT

∂Nw

)
T,V,λ

(3.24)
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This property is essential to phase equilibrium calculations. The derivation
for this property expression is presented in the original work of van der Waals
and Platteeuw (1959) as

∆µH−EL
w = kBT

(
∑

j

[
νj ln

(
1−∑

i

[
Θij
])])

(3.25)

where the superscript H−EL indicate this is a difference between actual hydrate
and empty lattice reference.

Finally, for any phase equilibrium calculation, given guest component fu-
gacities, pressure and temperature, after guest component composition are cal-
culated using Eq. 3.21, 3.22 and 3.23, the fugacity for water is calculated accord-
ing to

f̂ H
w = f̂ Pw

w exp
(

∆µEL−Pw + ∆µH−EL

R T

)
(3.26)

and fugacity coefficients for guest component are calculated according to

φ̂H
w =

f̂ H
w

xH
w P

(3.27)

for water, and

φ̂H
i =

f̂ H
i

xH
i P

(3.28)

for guest components.
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Chapter 4

Hydrate phase equilibrium
calculations

Here, we propose a modified algorithm for simultaneous multiphase flash
and stability analysis calculations, based on the works of GUPTA et al. (1991)
and of BALLARD and SLOAN JR. (2004). The proposed algorithm performs
calculations regarding three kinds of specifications: the isothermal-isobaric-flash
TP−flash, the incipient phase point temperature or pressure calculation, at given
T or P, respectively (Pβ1−flash or Tβ1−flash ), which determines a point over
a P× T phase equilibrium diagram boundary line, and the two incipient phases
point calculation β1β2−flash, which determines a point of intersection between
two boundary lines.

We applied this algorithm in calculations of several phase diagrams in-
volving liquid and vapor fluid phases, and ice and hydrates with sI and sII crys-
talline structures solid phases. These calculations included complex behavior
such as single and mixed hydrates retrograde dissociation, hydrate structures
coexistence, invariant points, thermodynamic inhibitor induced freezing point
depression, low water content gas sublimation line.

Our algorithm depends on fugacity coefficients that have to be calculated
by suitable thermodynamic models using input variables from a given iteration.
To include hydrates phases within the algorithm calculations, we treat pressure,
temperature and guest components fugacities as input variables and present ex-
pressions for the calculations of fugacity coefficients for all components included
in hydrate phases from these variables.
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4.1 Equations for the simultaneous multiphase flash

and stability analysis calculations

The key equations used here are: multi-reference K-values, multiphase
Rachford-Rice equations, equations for updating the composition, equations for
updating the hydrate guests fugacity, and equations for calculating the stability
variables. These were derived from Gibbs energy minimization for a TP−flash
specification, with subsequent reformulations to allow for Tβ1−flash, Pβ1−flash
and β1β2−flash calculations.

For each thermodynamic model considered, there shall be expressions for
the array of fugacity coefficients (φ̂i) of every component included in the mod-
eled phases. For the sake of clarity, the equations that constitute the thermody-
namic model for a given phase are proposed to be regarded by means of two
abstractions, which differ in which are the most convenient input variables for
each case (Eq. 4.1 and 4.2). The first abstraction applies for the fluid phases con-
sidered in this work, as well as ice, identified as thermodynamic models group
1 (TM1), while the second abstraction applies for hydrate phases in structures sI

and sII, identified as thermodynamic models group 2 (TM2), as follows:

φ̂TM1
i (T, P, x) (4.1)

for a normalized composition given by x, and

φ̂TM2
i

(
T, P, f̂ g

)
(4.2)

where f̂ g corresponds to guest component fugacities.

For components that are not included in some phase, by definition, e.g. any
component other than water in ice phase, or any component unable to occupy
hydrate cavities in a hydrate phase, its fugacity coefficient in the excluding phase
tends to infinity.

The fugacity coefficients are used to define K-values (distribution coeffi-
cients - Kij). We propose the use of multi-reference K-values which allow the
consistent handling of such behavior, preventing infinity fugacity coefficients
from appearing as numerators in any subsequent equations. This approach al-
lows the methodology to take into consideration phases that exclude one or more
components by using the most suitable phase as reference for each component,
being it a phase which is assumed as being present and a phase which presents
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the highest mole fraction value for that component among the other phases.

Ki,j =
φi,ref (i)

φi,j
(4.3)

in which ref (i) represents the index of the chosen reference phase for component
i.

Let c enumerate indexes for all components in the system, from 1 to nc.
Let m enumerate indexes for all modeled phases, from 1 to nm, let REF be the
index of the chosen mass balance reference phase, whose relative phase amount
(βREF) is considered a dependent variable according to

βREF = 1− ∑
j 6=REF

[
β j
]

(4.4)

and let p contain the indexes corresponding to the np phases assumed present,
excluding the mass balance reference phase. Stability analysis and equilibrium
criteria originate the following nonlinear residue equations for assumed present
phases:

Resp
j = ∑

i in c

 zi
(
Ki,j − Ki,REF

)
Ki,REF + ∑

l in p
[βl (Ki,l − Ki,REF)]

 = 0 (4.5)

and the following explicit equation for assumed shadow phase stability vari-
ables:

θj = ln


∑

i in c

 zi (Ki,REF)

Ki,REF + ∑
l in p

[βl (Ki,l − Ki,REF)]


∑

i in c

 zi
(
Ki,j
)

Ki,REF + ∑
l in p

[βl (Ki,l − Ki,REF)]




(4.6)

Composition for group TM1 phases are related to mass balance variables
and K-values as follows:

xi,ref (i) =
zi

Ki,REF + ∑
l in p

[βl (Ki,l − Ki,REF)]
(4.7)

and

xi,j = xi,ref (i)Ki,jeθj (4.8)
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Additionally, for the group TM2, the following equation is proposed for
updating fugacity of guest components as function of mass balance variables
and K-values:

fi,j =
ziKi,jeθj

Ki,REF + ∑
l in p

[βl (Ki,l − Ki,REF)]
φi,jP (4.9)

The complete derivation of these equations is presented in Appendix A.

4.2 Algorithm for the isothermal-isobaric flash.

The algorithm proposed here is considered as a simultaneous multiphase
flash and stability analysis methodology. This is supported by the same charac-
teristic present in the original works (BALLARD and SLOAN JR., 2004; GUPTA
et al., 1991), which is that phase amount and stability variable solutions are
searched for simultaneously in the iterative scheme, as opposed to the method-
ology of MICHELSEN (1982), as discussed below.

These algorithms work with a definite number of modeled phases, that are
phases that may be present at equilibrium in thermodynamic conditions close
to the simulated condition, according to experience. The algorithm shall pro-
vide the information of whether each of these phases will be in fact present at
equilibrium or not. In case a modeled phase is conclude not to be present, the
variables corresponding to this phase may converge to a shadow phase solution
or to a trivial solution. As the hydrate phases are modeled by a different set of
equations than the fluid phases, and using different parameters for each struc-
ture, the variables corresponding to this phase may converge to a shadow phase
solution, but not to a trivial solution.

As the algorithm progresses, these phases are either assumed as present
or as shadow phase, which determines the independent variables and equations
for the numerical method. The assumption for each phase and, therefore, the
independent variables and equations, may change between iterations depending
on values of stability and phase amount variables. On the other hand, in the
approach used by Michelsen, a flash calculation with a definite set of phases
assumed present at equilibrium is converged, and then an independent stability
analysis loop is conducted to test whether another phase should be considered
in a augmented flash calculation or not.
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We should note that when a hydrate phase is not present at equilibrium,
the variables in the system of equations that correspond to their properties will
approach values that characterize a shadow phase solution. That is sure to oc-
cur because the hydrate modeling is done using different equations than the
equation of state used for the fluid phases modeling (eos-phases). Conversely,
the eos-phases variables may converge to trivial or shadow phase solutions, de-
pending on thermodynamic conditions and initial guess for composition.

Here, we extend the concept of shadow phases to treat hydrate phases,
having the guest component fugacities as the independent variables. However,
the assurance of convergence of the stability analysis for eos-phases is very sen-
sitive to initial guesses and the well understood technique of stability analysis
discussed by Michelsen can be applied in combination with our algorithm for
post-calculations analysis of stability of these fluid phases.

It should be noted that our successive substitution equation (Eq. 4.7) for
the updating of composition values, when applied to an assumed shadow phase,
works similarly to the one used by Michelsen for solution of stationary TPD
composition. They are equivalent at the solution, however, differ in three aspects
that will influence convergence:

First, our equation is similar to the one used in a flash calculation, in which
the composition of the analyzed phase is updated according to its K-value and
to every other present phase amounts and K-values. On the other hand, the
equation used by Michelsen is similar to the one used in a bubble point equation,
in which the composition of the analyzed phase is updated according to its K-
value considering 1 reference phase. This difference will vanish in the limiting
case of calculations involving a shadow phase and a single assumed present
bulk phase.

Second, we used multi-reference K-values, in order not to have any division
by numbers close to zero in the system of equations for the general case.

And third, we first calculate stability variables and then calculate normal-
ized composition for the analyzed phase. In contrast, Michelsen approach calcu-
lates nc not-normalized molar faction -like variables, from which they compute
actual molar fractions and TPD.

The algorithm used consist of a loop for solution of the β j variables for
assumed present phases, given constant values of xij and f̂ij solving multiphase
Rachford Rice equations (Resp

j ), with proposed multi-reference K-values, using
NewtonRaphson method. The θj variables are calculated after the Newton-
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Raphson method. And xij or f̂ij, depending on the group to which each phase
belongs, are updated in an outer loop using a successive substitution method.
The multi reference K-values are evaluated from definition using the thermody-
namic models when necessary, i.e. when its values are required and any of xij

or f̂ij, T or P have been updated after its last evaluation.

After Kij evaluations, a verification of convergence must be performed. If
the values of composition and volume of an eos-phase (a fluid phase modeled
with an equation of state) converge to the same values as the variables corre-
sponding to another eos-phase in the list (which is denominated a trivial solu-
tion), the variables and equations related to that phase need to be removed from
the system of equation system, because it is not be possible to independently
calculate the β j variables for two exactly equal phases and the Jacobian matrix
in the NewtonRaphson method would become singular.

In the current approach, there is no possibility of reappearance of a phase
that was eliminated as result of the trivial solution criteria. If desired to test for
a phase with characteristics similar to the phase that was removed, a new phase
must be created, at first assumed as a shadow phase with a new initial guess for
composition.

4.3 NewtonRaphson loop

In a Newton-Raphson step, some variables are regarded as constant, while
the others, regarded as independent variables vj for residue functions Resj and
are updated according to the following expression in matrix notation:

v[k+1] = v[k] − J−1Res (4.10)

In which J is the Jacobian matrix, defined from the partial derivatives of
each residue equation Resj with respect to each independent variable vj.

Jn,j =

(
∂Resn

∂vj

)
[v 6=j]

(4.11)

Originally, in the reference works (BALLARD and SLOAN JR., 2004;
GUPTA et al., 1991), all of the residue equations ResE and ResS that are presented
in Appendix C, or equivalent versions of these, were solved in the Newton-
Raphson method block, for all β j and θj variables. However, we noticed prob-
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lems in the convergence of that block caused by equations corresponding to the
ResS

j in incipient phase point calculations, when both β j and θj for a given phase
are equal to zero.

Here, based on the triviality of a solution for ResS
j for either one of β j or

θj when the other one is assumed different from zero, it is proposed that this
set of equations is implicitly solved analytically in the assembling of a reduced
equation system being intended for numerical evaluation.

In this approach, the phases characterized as present or not present may
be checked after every or after a couple of iterations. When a phase changes
category the system of equations is reassembled before the algorithm moves on.

Also, being able to decouple ResE for assumed present phases (Resp) from
the ones for shadow phases, θj variables for shadow phases are solved explic-
itly outside the Newton-Raphson block. And, therefore, only the equations Resp

are used to assemble the Res array of the Newton-Raphson method, and only β j

variables for assumed present phases are used to assemble the independent vari-
able vector, while θj of these phases are zero, to meet the corresponding equa-
tion ResS analytically, and θj of shadow phases is calculated after the Newton-
Raphson loop. The management of which β j variables should be calculated in
the Newton-Raphson loop is done by an appearance/disappearance event han-
dling with a presence list for the phases under consideration.

Hence, the proposed independent variable vector and residue functions
that shall be solved in the Newton-Raphson loop, vj and Resj are, for a TP−flash:

v =
[
β j for each j in p

]
(4.12a)

and

Res =
[
Resp

j for each j in p
]

(4.12b)

where p lists the index of the phases that are assumed present in a given calcula-
tion step, among all the modeled phases, excluding the phase which is reference
for the mass balance.

This system consists of a number variables and equations equal to the size
of the p list, which is the number of assumed present phases, except the mass
balance reference phase. This is an equation system with less than half the size
of the equation system solved in then Newton-Raphson block in the reference
works, which was twice all modelled phases (β j and θj for each) except the mass
balance reference phase.
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Therefore, this modification contributes to improving the algorithm speed.
By removing the equations ResS known for causing numerical instability in the
method, this modification also contributes to the algorithm robustness.

For the Jacobian matrix evaluation, the derivatives of equations Resp with
respect to the independent variables in the Newton-Raphson method are the
following:

(
∂Resp

n

∂β j

)
[βk 6=j]

= − ∑
i in c


zi (Ki,n − Ki,REF)

(
Ki,j − Ki,REF

)(
Ki,REF + ∑

l in p

[
β j (Ki,l − Ki,REF)

])2

 (4.13)

After every step of the Newton-Raphson method, all the θj variables for
the assumed shadow phases are calculated (Eq. 4.6) and 4 verification of conver-
gence are performed:

• Step restriction is used such that β j variables are not allowed to change
more than 25% of its original values. In case the variable value is close
to zero, the relative step approach becomes problematic. Tehrefore, if the
limiting step size was lower than 1× 10−5, a limiting step of this fixed size
was used instead.

• If any phase amount variable assumed negative value in a given iteration,
the phase is removed from the present phases list, i.e., β j = 0, and the
element corresponding to this phase in the phase presence list is set to
indicate that this phase is no longer assumed present and its stability vari-
able should be calculated in the next iterations of the algorithm, while the
phase amount is held constant and equal to zero. And if it is the reference
phase βREF to assume negative value, another phase is chosen as reference.

• If the stability variable for any phase assumes negative value while the
phase amount for that phase is defined as zero, this phase is reinserted in
the present phases list, i.e. θj = 0 and its phase amount is reinitialized
as β j = 1× 10−9, and it should be calculated in the next iterations of the
algorithm, while the stability variable is held constant and equal to zero.

Here, we propose the use of an appearance/disappearance management
that must not allow exceeding of nc + 1 phases simultaneously present for a
TP−flash calculation. The reason for that is that, while having more than nc
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present phases, the equation system becomes indifferent, i.e. the system will
have infinitely many solutions for these variables, according to previous discus-
sion. However, while equilibrium K-values are not obtained, as many as nc of β j

variables can be calculated for assumed present phases in an iteration, besides
the reference phase, without the problem of solutions. Otherwise, the conse-
quences in the numerical method are that if there are too many phases present
during Newton-Raphson iterations, the Jacobian matrix becomes singular. In
case it is not possible to reinsert a phase without inflicting this rule, iterations
proceed with the negative θj until disappearing of another phase is detected in
the appearance/disappearance management.

4.4 Successive substitution loop

An outer loop is used to update and verify convergence in composition or
fugacity using successive substitution method and the values provided from the
NewtonRaphson loop for relative phase amounts and stability variables. More
specifically, considering group TM1 phases according to the abstraction of Eq.
(4.1), the composition is updated using explicit expressions for composition (Eq.
4.7 and 4.8), while, on the other hand, in this work, being group TM2 phase
model regarded according to the abstraction presented in Eq. 4.2, it is proposed
that fugacity is updated according to Eq. 4.9. Then thermodynamic models for
group TM1 phases can use the new composition values and the ones for group
TM2 can use the new fugacity values to provide updated fugacity coefficient
values and K-values. In this way, the updating methodology is valid for simu-
lations whereas the reference phase is a phase from group TM1 or TM2, unlike
in the reference work BALLARD and SLOAN JR. (2004) in which the reference
phase was required to be a fluid phase. Moreover, a step control is used so that
the maximum allowed variation in the successive substitution is of 25% of the
variable value in that iteration (or a minimum of 1× 10−5).

4.5 Extension of the algorithm for incipient phase

points

Given the specification of determined phase amount and one of either T
or P, the equation system is completely specified and then the remaining one
of P or T can be calculated. For the determination of a boundary of the phase
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envelope in the P× T diagram, i.e. a Tβ1−flash or Pβ1−flash, the β j variable for
determined phase is specified as zero, both the θj variable and the Resj equation
for that phase become obsolete, as the incipient phase is in equilibrium with the
present phases, by definition; one of the T or P variables is specified and the
remaining one is included in the NewtonRaphson equation system.

The partial derivatives of the equations Resp, with respect to T or P are
expressed analytically with respect to a dummy variable ξ, equivalent to T or P:

N1 = zi

(
K
′
i,n − K

′
i,REF

)
(4.14a)

D1 = Ki,REF + ∑
l in p

[βl (Ki,n − Ki,REF)] (4.14b)

N2 = zi (Ki,n − Ki,REF)

(
K
′
i,REF + ∑

l in p

[
βl

(
K
′
i,n − K

′
i,REF

)])
(4.14c)(

∂Resp
n

∂ξ

)
v 6=ξ

= ∑
i in c

[
N1
D1
− N2

D12

]
(4.14d)

In which K
′
i,n is the partial derivative of Ki,n with respect to ξ:

K
′
i,n =

1
φi,n

(
∂φi,ref (i)

∂ξ

)
−

φi,ref (i)

(φi,n)
2

(
∂φi,n

∂ξ

)
(4.15)

This expression, in turn, depends on the derivatives of the fugacity coef-
ficients with respect to the same variable. Considering a generalized algorithm
for any thermodynamic models, this partial derivative are evaluated numerically
using the central point finite difference method.

(
∂φi,ref (i)

∂ξ

)
=

φi,ref (i)(ξ + δ)− φi,ref (i)(ξ − δ)

2δ
(4.16)

for each component and phases in which they are included. Otherwise, for each
component in phases from which they are excluded, it is equal to zero, where
δ is an arbitrary perturbation, having magnitude much smaller than ξ and, at
the same time, higher than numerical tolerance used in these calculations (e.g.
δ = 1× 10−5ξ + 1× 10−10).

Let b1 be the index for an assumed incipient phase. This index should be
removed from the p array, as the phase amount for an incipient phase is zero,
and this variable will be fixed in calculations of condition (T or P) for incipient
point.
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Hence, the proposed independent variable vector and residue functions
that shall be solved in the NewtonRaphson loop, vj and Resj are, for a Tβ1−flash
or a Pβ1−flash.

vb1 =
[
T or P,

(
β j for each j in p

)]
(4.17)

and

Resb1 =
[
Resp

b1
,
(

Resp
j for each j in p

)]
(4.18)

In the same way, by specifying two phase amounts, i.e. a β1β2−flash, the
T and P pair that satisfy the specification can be calculated, by specifying these
two phases as incipient, one can find the T and P pair that marks the intersection
between the phase diagram boundaries for two distinct incipient phases.

Let b2 be the index for a second assumed incipient phase, remove also this
index from the p array. The proposed independent variable and equation system
is then as follows.

vb1,b2 =
[
T, P,

(
β j for each j in p

)]
(4.19)

and

Resb1,b2 =
[
Resp

b1
, Resp

b2
,
(

Resp
j for each j in p

)]
(4.20)

In summary, the T or P can be solved for the Tβ1−flash, Pβ1−flash
or β1β2−flash calculations using the same set of residue functions as for the
TP−flash, just by differentiating those with respect to the different desired set
of variables.

The maximum number of assumed present phases allowed by the appear-
ance/disappearance management increases to nc + 2 and nc + 3 in the Tβ1−flash
or Pβ1−flash and in the β1β2−flash, respectively, as the specified β j variables for
the b1 and b2 phases are specified, and not calculated in the Newton-Raphson
method.

The algorithm is summarized as follows. The decisions involved in the
block diagram are based on flash specifications or on each phase thermodynamic
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model group.

Function multiphaseFlash():
input: zi, CalculationMode, 2 of {T,P,β j} accordingly
guess: xij, f̂ij, T, P, β j, θj

Assemble vj according to Eq. (4.12a, 4.17 or 4.19)
do

do
Calculate Kij from xij, f̂ij,T,P (Eq. 4.3).
Calculate RESNR

j according to Eq. (4.12b, 4.18 or 4.20).
Calculate Jac according to Eq. (4.11, 4.13, 4.14d and 4.15).
Update vj in a Newton Raphson method step (Eq. 4.10)
Update β j, T and P, accordingly to the definition of vj

Update θj according to the explict equation Eq. 4.6
if βREF < 0 then

change reference;
reassemble v;

else if β j < 0 then
reassemble v;

end
if θj < 0 then

reassemble v;
end

loop while abs
(

RESNR) > 1× 10−9;
Update xij for phases in TM1, according to Eq. (4.7 and 4.8)
Update f̂ij for phases in TM2, according to Eq. (4.9)

Calculate RESSS ← ∑
i,j1

(
[xi,j1]

k − [xi,j1]
k−1)+ ∑

i,j2

(
[ f̂i,j2]

k − [ f̂i,j2]
k−1
)

loop while abs
(

RESSS) > 1× 10−9;

return xij, f̂ij, T, P, β j, θj

4.6 Initial guesses

As not to violate Gibbs phase rule in the initial guess, nc, nc + 1 and nc + 2
phases, where all the components are included in at least one of them, are as-
sumed present for the TP−flash, Tβ1−flash or Pβ1−flash and β1β2−flash spec-
ifications, respectively. For the β j variables, the initially guessed present phases
may be initialized as present in equal amounts, while the θj values for the ini-
tially absent phases may be any positive number, but usually lower than 1. Also,
initial guess values for Kij can be obtained from correlations, ideal behavior as-
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sumption or evaluations of the thermodynamic models using initial guesses for
the thermodynamic models inputs, that is, composition of fluid phases and fu-
gacity of guests in hydrate phases. Initial guess for composition of fluid phases
are taken empirically according to MICHELSEN (1982) suggestions and to expe-
rience. Initial guess for fugacity of guests is equal to the fugacity of components
in an assumed present fluid phase, as calculated from the corresponding equa-
tion of state.

4.7 Phase diagram sequential calculations

We assemble phase diagrams from recursive usage of the presented algo-
rithm. For one given phase as in incipient condition, determining the pressure at
a given temperature (Tβ1−flash) or temperature at a given pressure (Pβ1−flash)
corresponds to points belonging to line segments of phase boundary curves.
While finding the pressure and temperature for the specification of two incip-
ient phases (β1β2−flash) corresponds to the point of intersection between two
line segments.

The phase diagram is composed of line segments that correspond to one
phase in incipient condition. We generate these line segments using incipient
conditions calculations recursively, following a grid in pressure or in tempera-
ture.

We initialize the calculations using a TP−flash at the minimum tempera-
ture and minimum pressure in the range of interest. Then, knowing what are
the phases that are present in bulk amount in the edge of the range of interest,
we perform a Tβ1−flash to find the pressure at which either one of these phases
will disappear, or a different phase will appear. The solution corresponds to the
first point in the diagram under study. Then we increase the specified tempera-
ture following a grid that extends to the maximum temperature in the range of
interest and perform additional Tβ1−flash sequentially. We use the solutions for
the calculation of one point as initial guess for the next. Depending on the slope
of the curve being calculated, we change the choice of which is the specified
variable. While the slope is close to zero, temperature is used as the specified
variable. If the slope becomes higher than a given limit, pressure is used as the
specified variable Pβ1−flash, following a grid that extends to the maximum or
minimum pressure in the range of interest, according to the trend observed in
the previous few points. The limit used was based empirically on the scale of
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the plot in the region of interest:

((
∂ ln P

∂T

)
eq

)lim

= 1 (4.21)

At a condition over some line segment, all phases that are present in either
of the separate regions will be present. An incipient phase line may consist of a
few adjacent line segments joined at 2- or 3-line connections. Some of the 4 or 6
segments that meet at these connections superpose if they are univariant.

At some point the algorithm will indicate either that one of the bulk phases
that was present in a previous point is no longer present or that a bulk phase
that was not present in a previous point is now present ( the stability variables
corresponding to one phase changes from positive to zero and the phase amount
changes from zero to a positive value between two points in the calculation grid).
That indicates that a curve for one incipient phase has intercepted with the curve
for a different incipient phase. The precise values of the points of intersection
are calculated using β1β2−flash specification. After an intersection, the slope of
the curve for an incipient phase changes discontinuously, possibly requiring a
reversal in the pressure and/or temperature grids.

The calculations for the curve for that one incipient phase terminate when
the calculations reach the limits of the range of interest. Then the calculations
for a different incipient phase are conducted, starting from each intersection
encountered. The most convenient choice of the grid for these lines depends on
the phases that appear at those intersections. We summarize this procedure in
Figure 4.1

At last, we assemble these lines in a single plot to generate a phase diagram
for the simulated mixture in the desired pressure and temperature ranges. The
regions are labeled according to the phases that are present in those pressure
and temperature conditions, at equilibrium. The determination of which are the
set of phases that are present in a region of the diagram follows from a TP−flash
calculations at any point inside a labeled region.
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Figure 4.1: Flowchart of the procedures to systematically generate phase dia-
grams from a multiphase equilibrium algorithm.
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Chapter 5

Results and discussion on Phase
diagrams

The results and discussion are presented accordingly to different phase
equilibrium scenarios analyzed. Note that the phase diagrams have labels given
for regions in the P× T plane, so that the phases present at any line are the same
phases present in at least one of the two regions that are separated by that line.

5.1 Single guest hydrates

Phase diagrams for hydrates in water and single guest mixtures were gen-
erated. The 3phase lines calculated represent coexistence of ice, vapor and hy-
drates, (I+V+H) or liquid water, vapor or liquid phases rich in the hydrate-
forming component and hydrates (Lw+V+H or Lw+Lhf+H). These results are
presented in Figure 5.1.
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Figure 5.1: Single hydrates formation boundary lines for (a) Methane in sI, (b)
ethane in sI, (c) propane in sII, (d) i-butane in sII. Circles are experimental data
from literature (SLOAN JR and KOH, 2007). HsI stands for hydrate in structure
I, HsII stands for hydrate in structure II, Lw stands for liquid water, with trace
amount of guest components in phase equilibrium composition, Lhf stands for
Liquid phase rich in hydrate forming components, V stands for vapor, I stands
for conventional ice. Q1 and Q2 stands for first and second quadruple points

The results presented in this topic show both the level of adequacy of the
thermodynamic model implementation using parameters from the literature and
the capacity of the proposed algorithm to perform calculations involving three
phase equilibrium involving I, Lw, Lhf, V, HsI and HsII phases. The quantitative
representation depends on thermodynamic model parameters, which have not
been optimized in this work. The following different qualitative behavior calcu-
lated here are identified: mixture (a) showing a single quadruple point, mixtures
(b to d) showing two distinct quadruple points, and mixture (c) showing retro-
grade dissociation. A quadruple point in binary mixtures is a special case of
intersection between phase equilibrium boundary lines, in which the lines are
3phase equilibrium loci, therefore univariant and the point is a 4phase equi-
librium locus, therefore invariant. These intersections were observed naturally
from sequential calculations of lines having different incipient phase specifica-
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tions. After, each quadruple point precise value was calculated using β1β2−flash
specifications.

5.2 Low water content gas streams

A system composed of a hydrateforming component and sufficiently low
water content will typically present a (V), a (I+V) and a (H+V) region. Figure
5.2 shows the P× T phase diagram for a mixture with water mole fraction equal
to 1× 10−4 (black lines), superposed to shadowed regions corresponding to the
phase equilibrium regions as divided by the univariant lines observed for a sys-
tem with sufficient water content for Lw-V equilibrium occurrence.

Figure 5.2: Phase diagram for single guest methane hydrate in high and low
water content. The shadowed regions represent the two phase equilibrium loci,
as divided by the three phase equilibrium univariant lines observed for a system
with sufficient high water content for Lw+V equilibrium to occur in the range
of temperature and pressure shown. The black lines divide the distinct phase
equilibrium regions for the mixture with water mole fraction equal to 1× 10−4,
as identified by the letters over the plot.

The I+H+V line for the low water content mixture coincides with the high
water content case because, at that locus, the system is univariant, having 3
phases and 2 components.
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It should be noted that the proposed algorithm handles these one- or two-
phase-equilibrium scenarios using the same numerical methods and treating
these phases with the same thermodynamic modeling used in the three-phase-
equilibrium scenarios. The stability analysis detects that liquid state water is not
present, that is, always presenting positive value for the stability variable, for
any condition in the range shown in this diagram.

5.3 Aqueous systems containing thermodynamic in-

hibitors

A system composed of one hydrateforming component, water and one
thermodynamic aqueous phase soluble hydrates thermodynamic inhibitor, as
is ethanol, will typically present a region of Lw-V, of I-Lw-V and of H-Lw-V
equilibrium. Figure 5.3 shows the P × T phase diagram for a mixture with
global mole proportion of ethanol/water equal to 3/7 (black lines), superposed
to shadowed regions corresponding to the phase equilibrium regions as divided
by the univariant lines observed for a system with no ethanol.
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Figure 5.3: Phase diagram for single guest methane hydrate with and without
ethanol. The shadowed regions present Hydrate (H), Vapor (V) Liquid water
(Lw) and/or Ice (I) phases in equilibrium, as divided by the univariant lines
observed for a system with no ethanol, while the black lines divide the dis-
tinct phase equilibrium regions for the mixture with global mole proportion of
ethanol/water equal to 3/7, (Aq) corresponds to aqueous solution containing
ethanol.

As there are three components in the system, the boundary line of
Lw+V/I+Lw+V is not univariant, and it separates a region of 3phase equilib-
rium from a region of 2phase equilibrium. The I+Lw+V+H line is a univariant
locus, having 4 phases and 3 components. It approximately coincides with the
no-inhibitor case because, at that locus, as the vapor phase contains negligible
ethanol quantity and our hydrate model does not account for ethanol partici-
pation as guests, there are three out of these four phases composed basically
by only two components, that are the same phases and components as in the
no-inhibitor case (I+H+V containing only water, only water and methane, and
approximately only methane, respectively).

The stability analysis detects either 2 or 3 phase equilibrium regions, based
on stability variable values for each modeled phase. Consistent modeling of
the reference conditions assures no discontinuities are observed in the phase
diagrams.
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5.4 Phase diagram for a mixture of water, methane

and propane

We generated a P × T phase diagram for the system [water, methane,
propane] with the global mole composition of [0.4, 0.3, 0.3] (Figure 5.4). This
composition is in a range that corresponds to excess of guest components in
relation to water, in comparison to the approximate composition of the hydrate
phase. Therefore, the complete formation of hydrates takes place with the con-
sumption of all water from the aqueous liquid or ice phases.

This diagram presents regions of phase equilibrium involving ice (I), water
rich liquid (Lw), hydrate forming components rich liquid (Lhf), vapor (V) and
hydrate in sII structure (HsII). In contrast with phase diagrams for single guest
hydrates, it presents a phase envelope associated with the condensation of the
gas phase (V) originating the liquid phase Lhf. We call the line that separates
the regions in which hydrate phases are present from the ones in which these
are not present as the hydrate formation line. In this phase diagram, this line
crosses the Lhf-V equilibrium phase envelope. In more details, at relatively low
pressure range, (approximately 1× 105 - 1× 106 Pa) the hydrate line determines
Lw + H + V coexistence, at higher pressure (approximately 1× 106 - 1× 107 Pa)
this line determines coexistence of (Lw + H + V + Lhf), and at even higher
pressure (above approximately 1× 107 Pa) this line determines coexistence of
(Lw + H + Lhf). The highlights α, β and γ of Figure 5.4 show, in the ranges in
which these intersections occur, some regions of 2- and of 3-phase-equilibrium,
some 3- and some 4-phase equilibrium lines. The 3-phase regions correspond to
equilibrium conditions in which only part of the water in the water rich phase,
i.e. ice or aqueous liquid, has changed in physical state and participated in the
hydrate phase formation. The 4-phase lines correspond to superposition of a
line segments calculated for one incipient phase and a line segments calculated
for a different incipient phase.

In this diagram, we present our calculations together with experimental
data of univariant 4-phase equilibrium from literature as made available by NIST
hydrate data viewer (KROENLEIN et al., 2015).

Figures 5.5 to 5.7 show the highlights α, β and γ. Accompanying each high-
light, we present an abstraction representing the phase equilibrium lines. The
abstractions have the purpose of making clearer how segments connect and over-
lap. Each line formatting (continuous black, continuous light gray and dashed
dark gray) represents a segment of an isopleth corresponding to a given phase
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as incipient for the mixture with the defined composition. The dashed circles
mark the locations where different segments intersect. Thinner lines are used in
the portions where two segments overlap, while at the same time representing
them side by side, so that they can be visualized with no ambiguity. A locus in
which line segments overlap is a locus of univariant equilibrium.

Figure 5.5 shows highlight α. It corresponds to the portion of the phase
diagram above the Lhf-V phase envelope, in which HsII, Lhf, Lw and V phases
may be present.

The V phase boundary line is the bubble point line of the Lhf-V phase en-
velope. Above it, the boundary line for Lw as incipient and the one for H as
incipient delimit a three phase region (Lw + H + Lhf). In the segment AB, the
lines for Lw and the line for V coincide, meaning that segment is an univari-
ant, and the HsII, Lw, Lhf and V phases coexist. In this segment, either Lw or V
phases or none may be in incipient condition. In a univariant condition, pressure
and temperature are not independent variables, so the solution for the relative
amount of these phases will depend on the value for some intensive thermody-
namic property related to the multiphase scope, as is the overall molar enthalpy
or overall molar volume of the multiphase system. Below the point B from the
bubble point line, these segments for Lw and for HsII coincide because the four
phases (Lw + H + Lhf + V) coexist. However, in this segment, either HsII or Lw
phases or none are in incipient condition, while V and Lhf are necessarily bulk
phases.

Figure 5.6 shows Highlight β, this corresponds to the portion of the phase
diagram just below the Lhf-V phase envelope. In this region, the HsII, Lhf, Lw
and V phases may be present. The Lhf phase boundary line corresponds to the
dew point line of the Lhf-V phases envelope. The boundary line with Lw as
incipient phase and the one with H as the incipient phase delimit a three phase
region (Lw + H + V). Above point C these lines coincide because four phases
coexist (Lw + H + Lhf + V). The system is univariant along this segment and
either Lw or HsII phases or none can be in incipient condition. In the segment
CD, the coexistence of the Lw + H + Lhf + V phases also occur, however in
this segment, Lw and Lhf are the two phases from which either one can be in
incipient condition. In fact, the univariant line observed in highlight β is the
continuation of the univariant line observed in highlight α. The 3- phase region
(Lw + Lhf + HsII) from highlight β is only clear in the abstraction Figure 5.6b,
while not being discernible in the calculated plot Figure 5.6a. However, this
region extends to the region of highlight γ (Figure 5.7) In the scaling used in
Figure 5.7, the Lw + Lhf + HsII phase equilibrium region is clear without the
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need of graphical artifacts.

Figure 5.7 shows highlight γ, which corresponds to the portion of the
global phase diagram (Figure 5.4) close to the normal freezing point of water. In
this region, the HsII, Lw, I and V phases may be present. The continuous light
gray line corresponds to the hydrate formation curve. In the calculated phase
diagram Figure 5.7a, there is, apparently, a single line separating the regions
of Lw-V and I-V equilibrium. However, that is not a univariant line, according
to Gibbs phase rule regarding the whole system. The lines for Lw as incipient
phase (dashed, dark gray) or I as incipient phase approximately overlap. That
happens in these calculations because Lw phase, as a natural consequence of
the equation of state used, is composed approximately of pure water. That be-
ing, the Lw-I phases equilibrium, behave approximately as 1-component 2-phase
equilibrium, which is a univariant equilibrium. Geometrically, both as a matter
of scaling and as a matter of solubility of the gases in the liquid water phase, as
the points F and G approach, the line segment EG tends to a vertical orientation,
as show in the calculated diagram Figure 5.7a.

These 3-phase regions are the most simple example of complex behavior
involving hydrates that only become possible to calculate when using a mul-
tiphase algorithm. This kind of algorithm allows to model phase equilibrium
beyond initial hydrate formation conditions.

These highlights show rather narrow regions of three-phase equilibrium
conditions. Regarding physico-chemical coherence of the regions present here,
it is in accordance with Gibbs phase rule that they must exist. For a system pre-
senting three components and three phases, the number of degrees of freedom
from the Gibbs phase rule is two; therefore, pressure and temperature can be
independently specified yielding solutions of three phase equilibrium varying
in composition of each phase. Furthermore, satisfying the Duhem theorem, for
a given mixture composition, these solutions vary in the amount of each phase.

All of these three-phase-equilibrium regions are bounded by at least two
lines of three-phase-equilibrium, in which one of the phases is in incipient con-
dition. That is, one line equivalent to a dew point calculation coupled to a
two-phase flash calculation, in which the two bulk phases are Lw and V. The
determination of the composition of each phase requires a flash calculations,
and the determination of the temperature or pressure requires a dew point like
calculation. Being the ‘dew’ phase a hydrate crystal, this is the usual line of cal-
culations of hydrate formation condition. The other line is equivalent to a bubble
point calculation coupled to a two-phase flash calculation, in which the two bulk

48



phases are H and V, and the ‘bubble’ phase is an aqueous phase droplet.

Following the analogy, the bubble point calculation solution occurs con-
sistently at slightly lower temperature or slightly higher pressure than the dew
point calculation solution. It is important to point out that these combined cal-
culations were performed implicitly, because our algorithm uses the equations
that characterize these equilibria in a unified procedure.

In addition, regarding numerical aspects of these calculations, to vouch for
the robustness of the methods that we used and the tolerances that we applied,
we verified the solutions for one or another incipient phase in univariant equi-
librium lines, where according to Gibbs phase rule both solutions must overlap.
In fact, our results coincide to several significant figures: 95% of values for ab-
solute relative deviation between bubble-point-like calculations and dew-point-
like calculations of pressure belongs to the interval (1× 10−15, 1× 10−10) while
this deviation measurement for points belonging to two distinct boundary lines
above the univariant Lw-HsII-Lhf-V line region were higher than 1× 10−2, and
below the univariant Lw-HsII-Lhf-V line region were higher than 1× 10−5.

Figure 5.4: Phase diagram for the system [H2O, C1, C3] with the global mole
composition of [0.40, 0.30, 0.30]. The regions present Ice (I), Hydrate in struc-
ture sII (HsII), water rich liquid (Lw), hydrate forming components rich liquid
(Lhf) and/or Vapor (V) phases in equilibrium. Experimental data from literature
available in NIST hydrate data viewer (KROENLEIN et al., 2015).
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Figure 5.5: Highlight α from phase diagram of the system [H2O, C1, C3] with the
global mole composition of [0.40, 0.30, 0.30] in the region of intersection between
boundary lines for Lhf vaporization and for HsII formation. The boundary lines
represent condition of incipient phase for Hydrate in structure sII (HsII - contin-
uous light gray line), water rich liquid (Lw - dashed dark gray line), and Vapor
(V - continuous black line). All the regions in this range present hydrate forming
components rich liquid phase (Lhf) in equilibrium.

Figure 5.6: Highlight β from P.T phase diagram for the system [H2O, C1, C3]
with the global mole composition of [0.40, 0.30, 0.30] in the region of intersection
between the boundary lines for the condensation of V and for hydrate forma-
tion. The boundary lines represent condition of incipient phase for Hydrate in
structure sII (HsII - continuous light gray line), water rich liquid (Lw - dashed
dark gray line), and hydrate forming components rich liquid (Lhf - continuous
black line). All the regions in this range present vapor phase (V) in equilibrium.
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Figure 5.7: Highlight γ from P.T phase diagram of the system [H2O, C1, C3]
with the global mole composition of [0.40, 0.30, 0.30] in the region of intersec-
tion between freezing water equilibrium line and hydrate formation line. The
boundary lines represent condition of incipient phase for Hydrate in structure
sII (HsII - continuous light gray line), water rich liquid (Lw - dashed dark gray
line), and Ice (I - continuous black line). All the regions in this range present
vapor phase (V) in equilibrium.

5.5 Phase diagram for a mixture of water, ethane and

propane

Figures 5.8 to 5.10 show the P× T phase diagram calculated for the system
water/ethane/propane with 3 different mixture compositions: [0.50, 0.15, 0.35],
[0.4, 0.3, 0.3] and [0.990, 0.005, 0.005] respectively.
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Figure 5.8: Phase diagram for the system water/ethane/propane in the mixture
composition of 0.5/0.15/0.35. The regions present Hydrate in structure sI (HsI)
and/or sII (HsII), Ice (I), water rich Liquid (Lw), hydrateforming components
rich Liquid (Lhf) and/or Vapor (V) phases in equilibrium. Points are experi-
mental data from literature (MOOIJER – VAN DEN HEUVEL, 2004).

Figure 5.9: Phase diagram for the system water/ethane/propane in the mixture
composition of 0.40/0.30/0.30. The regions present Hydrate in structure sI (HsI)
and/or sII (HsII), Ice (I), water rich Liquid (Lw), hydrateforming components
rich Liquid (Lhf) and/or Vapor (V) phases in equilibrium. Points are univariant
experimental data from literature (MOOIJER – VAN DEN HEUVEL, 2004).
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Figure 5.10: Phase diagram for the system water/ethane/propane in the mix-
ture composition of .990/0.005/0.005. The regions present Hydrate in structure
sI (HsI) and/or sII (HsII), Ice (I), water rich Liquid (Lw), hydrateforming com-
ponents rich Liquid (Lhf) and/or Vapor (V) phases in equilibrium. Points are
univariant experimental data from literature (MOOIJER – VAN DEN HEUVEL,
2004).

The following different qualitative behavior calculated here are identified:
Figures 5.8 and 5.9 show regions of small temperature range corresponding to
partial conversion of water into hydrates. In the case presented in Figure 5.9,
hydrate structure transition occurs inside the Lhf-V phase envelope, therefore
along a univariant line presenting the four phases HsI-HsII-Lhf-V. Also, this
phase diagram presents an invariant point in which the 5 phases Lw-HsI-HsII-
Lhf-V coexist. In the case presented in Figure 5.8, hydrate structure coexistence
occurs at higher pressure conditions. In the case presented in Figure 5.10, due
to excess of water in relation to hydrate composition, hydrate formation occurs
with consumption of V or Lhf phases, therefore H+I and H+Lw coexistence re-
gions occur. These figures also show reproduction of HsII+Lw+Lhf+V univari-
ant lines independently of system composition, while allowed by mass balance
relation. In these calculations, the transition between all different phase equi-
librium scenarios is automatically detected. This is observed as, between two
successive incipient phase calculations, the solution for the stability variable for
a given phase changes between 0 and positive values and, the solution for its
phase amount changes between a positive value and zero. This indicates that
this phase is present at the condition of the former calculation, and not present
at the condition of the latter calculation. As before, the point of connection be-
tween segments of the phase boundary presenting different incipient phases,
whether they are invariant or not, are calculated from β1β2−flash specifications.
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5.6 Phase diagram for a mixture of water, carbon

dioxide and iso-butane

We generated a P× T phase diagram generated for the system [water, car-
bon dioxide, iso-butane] with the global mole composition of [0.40, 0.58, 0.02]
(Figure 5.11a). This composition is in a range that corresponds to excess of guest
components in relation to water, and in which regions of structural transitions
occur.

This diagram presents a complex behavior for a system composed of three
components from natural gas as there are many distinct regions in which dif-
ferent phases are in equilibrium. In this diagram, we present our calculations
together with experimental data for Lw-H-V equilibrium, which corresponds to
the line dividing the gray and white regions in the plot. These measurements
however are from some isopleths with dry basis mole fraction of carbon dioxide
between 0.96 and 0.971 from literature (SLOAN JR and KOH, 2007).

Figure 5.11b shows the highlight α. It corresponds to the region near which
structural transition, and an invariant point occur. In the invariant point, (E), the
HsI, HsII, Lhf, V and Lw phases coexist. The segment ED exhibits retrograde
behavior, in which HsII dissolves and Lhf will appears upon increase in pressure.
Retrograde behavior also occurs in the segment AE, in which HsII dissolves
upon increase in pressure, however, with HsI being present. Moreover, in the
segment AB, another unusual behavior occurs, in which HsI will dissolve upon
reduction in temperature, however with HsII being present.

The physical chemical phase behavior predicted here is rather unintuitive,
consider for example a isobaric analysis occurring for the mixture presented in
Figure 5.11b at 2.5× 106 Pa, from 260 to 290 K. Hydrate structure sI is initially
present, then is becomes less favored than HsII and disappears, and then it be-
comes favored again and able to reappear, only to, at slightly higher temperature
condition, become less favored and prone to disappear once more. That behav-
ior is represented in the following series of expected transition of stable state for
the system following this analysis (HsI + Lhf → HsI + Lhf + V → HsII + Lhf +
V→ HsII + V→ HsI + HsII + V→ HsII + V + Lw→ Lw + V).

Numerically, this means that there are two solutions for the specification of
a given phase as being in incipient condition at some pressure or temperature
specifications, and these solutions differ on what are the bulk phases that are
present. Therefore, the convergence to each of these two real solutions will de-
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pend on the reference phase that is imposed, or if the stability analysis methodol-
ogy chooses the reference phase automatically, will depend on the initial guesses
for these phases amounts and composition.

In the univariant segment BE, 95% of the values of relative absolute devia-
tion for pressure in bubble-point-like and dew-point-like calculations belong to
the interval (2× 106, 7× 104).

Regarding the predictions in the conditions at which there is no available
experimental data, we believe they are sound, according to the capabilities of
the individual thermodynamic models that were used because we generate the
diagrams using thermodynamic models that are consistent with each other.

Figure 5.11: Phase diagram for the system [H2O, CO2, iC4] with the global
mole composition of [0.40, 0.58, 0.02] dry basis mole fraction of carbon dioxide =
0.967. The regions present Ice (I), Hydrate in structure sII (HsII) and in structure
sI (HsI), water rich liquid (Lw), hydrate forming components rich liquid (Lhf)
and/or Vapor (V) phases in equilibrium. Experimental data is for isopleths of
xdry(CO2) between 0.960 and 0.971 from literature (SLOAN JR and KOH, 2007).
Highlight α in the region of structural transition. The regions present Hydrate
in structure sII (HsII), and in structure sI, water rich Liquid (Lw), and/or Vapor
(V) phases in equilibrium.
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Chapter 6

A natural pressure shift

Since the publication of the original van der Waals and Platteeuw model
(vdW&P), more recent experimental data show (i) variations of hydrate volume
with temperature and pressure for a given guest type (BALLARD, 2004; HIRAI
et al., 2000a,b; TSE, 1987), (ii) variation of cage radii with changing hydrate vol-
ume (BALLARD, 2004), (iii) different hydrate volume at a given temperature
and pressure for different types of guests (HWANG et al., 1993; IKEDA et al.,
2000). These phenomena are commonly labeled as hydrate compressibility and
cage deformation. Volumetric information, such as this, is of great importance
for phase equilibrium and energy balances at high pressure, as made evident
by considering the Poynting correction, or the rigorous expressions for isother-
mal derivatives of the chemical potential with respect to pressure for pure sub-
stances,(

∂µ

∂P

)
T
= V (6.1)

and for molar enthalpy

(
∂H
∂P

)
T
= V − T

(
∂V
∂T

)
(6.2)

They relate variations in chemical potential (µ) or molar enthalpy H with
respect to pressure P at constant temperature T to the molar volume equation of
state V(T, P).

In fact, such information is also considerably important for the modeling
of mixtures even at low pressure. As the affinity of guests to cages is strongly
dependent on cage radii, the affinities in mixed hydrate should be significantly
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different from those in single hydrate.

From the aforementioned experimental observations, we see that the mo-
lar volume of the empty lattice (VEL) which corresponds to the ratio between
hydrate volume and number of water molecules (Eq. 6.3) depends on the mole
fraction of guest components in the hydrate associated with occupancy Θij. We
can also recognize a relation between the cage radii and the molar volume of the
hydrate phase. Consequently, this affects the Langmuir coefficients Cij, which
dictate the occupancy. These relations show an interdependence between the
variables that describe the hydrate. Finally the occupancy directly affects the
chemical potential of water in the hydrate, influencing phase equilibrium condi-
tions even at low pressure as represented in Eq. (6.4).

VEL =
VH

Nw
(6.3)

where VH is the hydrate phase volume and Nw is the number of water molecules
in the lattice.

VEL(Θij
)
→ Rj

(
VEL

)
→ Cij

(
Rj
)
→ Θij

(
Cij
)︸ ︷︷ ︸

interdependent

→ ∆µH−EL
w (6.4)

These advancements in experimental measurements pose new challenges
to modeling and opportunities for model enhancements. Experimental obser-
vation of type (i) are usually directly used in correlations for actual hydrate
volume as function of T and P (KLAUDA and SANDLER, 2000) or into param-
eterization or validation of crystal models for the empty lattice (BELOSLUDOV
et al., 1991; INERBAEV et al., 2006). This, in turn, affects Poynting integrals in
phase equilibrium calculations. Observations of type (ii) are usually also used
in correlations (BALLARD and SLOAN JR., 2002), thus propagating type (i) ob-
servations into the calculation of Langmuir coefficients and strongly affecting
calculation of occupancy in the classical vdW&P derived properties expressions
and into particular empirical modifications of the model. Moreover, observations
of type (iii) are usually considered by means of using discrete standard volume
parameter and ad hoc mixing rules of guest (HWANG et al., 1993). Derived
properties expressions may receive ad hoc corrections to the expressions from
the standard vdW&P model, which is said ideal with respect to its premises.
These corrections intend to compensate for noticeable deviations between ideal-
ity and reality. The activity coefficients, at their turn, depend on empirical ex-
pressions for volume difference as functions of temperature, pressure and guest
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composition (BALLARD, 2004). We have analyzed current modifications of the
vdW&P model and noticed that they show a thermodynamic inconsistency in
phase equilibrium calculations when including observation of type (ii) or (iii).
The inconsistency can be made evident performing a Clapeyron equation based
test: in the P× T diagram, a univariant phase equilibrium curve must intercept
the curve of null phase transition volume difference at its maximum temperature
(see Section 6.4). This inconsistency happens because the phenomena in obser-
vations of type (ii) and (iii) invalidate the constant cage radii premise, premise, a
premise on which all expressions for derived properties in the original vdW&P
model are based, and current modifications make use of those same expressions.

Our contribution here is in developing an extension of the vdW&P model
to contemplate compressible hydrate with cage distortion. Our extension dif-
fers from previous works because here, we include the information of volume
dependent cage radii at the partition function level and then we carry out the
mathematical procedure to obtain expressions for derived properties consider-
ing this dependency. In summary, by having varying radii with lattice volume,
and varying lattice volume with temperature and pressure, we calculate that
there arises a pressure shift between the hydrate and the empty lattice isochoric
reference at the same temperature. That pressure shift is responsible for vary-
ing actual hydrate volume for standard temperature and pressure for different
guest types. Our calculations of pressure shift and volume can be explained in
the steps presented in Figure 6.1.
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Figure 6.1: Representation of the pressure shift model featuring volume differ-
ence for hydrates of different guests at a same pressure P0. The blue square and
gray circles represent the hydrate lattice and its cages, respectively. The green
particles represent a component of large molecular size, which increases the hy-
drate lattice volume (V) with respect to the reference empty lattice volume (V0),
because of a positive pressure shift (∆PH−EL). Conversely, the orange particles
represent components of small molecular size, which reduce the hydrate lattice
volume, because of a negative pressure shift.

From one sole standard empty lattice having volume V0 at pressure P0 (blue
square for the lattice with gray circles for the cages), consider first the enclathra-
tion of guest molecules of type 1 (green ellipsis), which has a big molecular
dimension so they will fit tightly in the larger cages. In that process, the hydrate
has volume equal to that of the isochoric reference lattice, by definition. However
we can calculate a pressure difference ∆P, which for this kind of guest is positive.
Now, in order to calculate the volume that this hydrate would show at standard
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pressure P0 we would need to consider the process of enclathration from iso-
choric empty lattice reference at P ≈ P0 − |∆P|, therefore P < P0. The volume
of the empty lattice at a slightly lower pressure should then be slightly larger
than V0 (dashed lines and black arrows represent volume changes), depending
on the empty lattice compressibility in the pressure range under consideration.
We then can conclude that the volume of hydrate of guest component of type 1
at P0 is larger than V0 , the reference lattice at that same P0.

With that reasoning, analogously for a guest component of type 2, which
has a lower molecular dimension such that it fits loosely in the cages and cal-
culations show to have ∆P < 0, we conclude that the hydrate volume at P0 is
smaller that the reference lattice at that same P0.

Note that there are competing effects between tightness and looseness of
each species and each cage. Also, the pressure shift value is dependent on
the reference lattice pressure, so the actual implementation requires an itera-
tive scheme which is detailed in Section 6.7. We now present the derivation of
our model extension (Section 6.3), an algorithm for the actual application of the
model (Section 6.7) and then present results of our model for a few sample com-
ponents showing a number of phenomena captured by our model (Chapter 7).
The cell theory for hydrates summary is illustrated in Figure (6.2) using methane
hydrate parameters.
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Figure 6.2: Cell theory potentials based on the Kihara intermolecular potential:
(a) pair potential energy (U) for the methane-water interaction as function of
intermolecular center-of-mass distance (d), (b) cage potential (w) for a methane
molecule in small (shades of blue) and large (shades of green) cages of sII hydrate
structure with small perturbations (+, -) as function of radial coordinate (r), (c)
Langmuir coefficients (C) for small (blue) and large (green) cages versus of the
correspondent cage radius (R), and (d) Langmuir coefficients for small (shades
of blue) and large (shades of green) cages versus temperature (T) for several
small perturbations (+, -) of the cage radius around the standard value.

A pair interaction potential depends on a distance between a guest
molecule and a water molecule d and energy interaction parameters. While the
cage potential depends on the radial coordinate of a guest inside an assumed
spherical cage, the interaction parameters, in addition the coordination number
of water molecules per cage, and the cage radius. Finally, the Langmuir coeffi-
cients depend only on the actual cages radii and temperature.
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The pair potential (Figure 6.2a) shows an attractive, a repulsive and a
forbidden region regarding the distance between a guest molecule a the cage
boundary. The cage potential (Figure 6.2b) shows either a single minimum at
the center of the cage or two minima slightly offset depending on the molecular
parameters, coordination number and cage radius. Obviously the radial coordi-
nate in the classical spherical coordinate system does not actually take negative
values, so the intention of left half of the plot is to highlight the symmetry of the
spherical cage. Finally the Langmuir coefficient at constant temperature show a
maximum with respect to cage radius (Figure 6.2c). For a cage whose radius is
large, relative to the molecule size, the molecule fits loosely into the cage, then
attractive interaction predominates; Thus, for a slightly smaller cage radius, the
cage potential energy decreases and the Langmuir coefficients increases. This
may happen up to a point where the cage is small enough so that the molecule
fits tightly. For a even smaller cage radius, repulsive interaction predominates,
cage potential energy increases and Langmuir coefficients decrease. Plotting
Langmuir coefficients as function of temperature for small perturbations of the
cage radius (Figures 6.2d) shows that increasing the radius for a cage in which
the guest molecule fits tightly will make it too small, and the curve of Lang-
muir coefficient versus temperature is shifted down, (blue curves). On the other
hand, increasing the radius for a cage in which the guest component molecule
fits loosely will increase the predominance of attractive force and the curve of
Langmuir coefficient versus temperature is shifted up (green curves).

In summary, it is shown that a guest component of large molecular size
will distort the lattice increasing the hydrate volume, with respect to the refer-
ence empty lattice. And our model explains this phenomenon results from the
pressure shift caused by the adsorption, and that this pressure shift can be cal-
culated using the vdW&P partition function. Furthermore our model shows that
a guest component of small molecular size will also distort the lattice, making
the hydrate volume smaller, instead. This contrasts with an assumption used in
previous literature (HANDA and TSE, 1986; ZELE et al., 1999) that the smallest
molecules would cause no distortion.

6.1 Geometry relation between cages radii and lattice

molar volume

Here we relate the cage radii to the lattice molar volume, to support that
Rj depends on both the extensive volume of the lattice and on the number of
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water molecules, which are independent variables in the semi-grand-canonical
partition function. Here, by taking into consideration varying cage radius under
the approximation of Lennard-Jones and Devonshire, we intend to represent
isotropic cage deformations. Consider a unit cell with N0 molecules and edge
length a0, therefore with volume a3

0. Figure 6.3 shows that a is function of the
lattice molar volume and, therefore, in the calculations to be performed, it is a
function of both lattice volume at constant mole number and function of mole
number at constant lattice volume.

Figure 6.3: Geometric relation between lattice edge length (a), number of
molecules (N), extensive volume (V) and molar volume (V). The unit cell edge
parameter varies when varying either the total number of molecules in the phase
(purple arrows) or the total volume of the phase (blue arrows) while holding
the other constant. It is kept constant when varying both the total number of
molecules and total volume while holding constant the molar volume of the
phase.

Note that increasing the mole number, which is obtained by multiple of
unit cells mole number, holding constant extensive volume, results in smaller
molar volume and smaller unit cell edges so that more unit cells fit in the same
volume. Alternatively increasing volume while holding constant Nw, which
is done expanding one unit cell, results larger molar volume and larger edge
length. Only when increasing both extensive and mole number one can keep
constant molar volume and thus edge length.

There is evidence of variation of the radius of each cage type with the
unit cell lattice parameters from molecular simulations (BALLARD, 2004). Now,
we proceed to relate unit cell edge with cages radii according to the following
geometrical relations:
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1. The unit cell is a basic unit from which the macroscopic phase is described
by means of simple replication. The unit cell has constant number of
molecules (Nuc

w ) and its specific volume (Vuc/Nuc
w ) is equal to the macro-

scopic lattice molar volume VEL.

V
Nw

=
Vuc

Nuc
w

(6.5)

d
(

V
Nw

)
=

1
Nuc

w
dVuc (6.6)

2. Considering a cubic unit cell with variable edge length auc

Vuc = auc 3 (6.7)

dVuc = 3auc 2 dauc (6.8)

3. The cage radii is experimentally correlated to the unit cell edge, we here
consider the simplest case, apart from the trivial constant radius case, of it
being proportional to the edge length.

Rj = auc f
Rj
auc (6.9)

dRj = f
Rj
aucdauc (6.10)

4. We calculate the proportionally factor from a measurement of Rj0 and auc
0

for every cage type at a standard condition.

f Rj =
Rj0

auc
0

(6.11)

This variable dependency scheme finally leads to

∂Cj

∂
(

V
Nw

) =
∂Cj

∂Rj

∂Rj

∂auc
∂auc

∂Vuc
∂Vuc

∂
(

V
Nw

) (6.12)

We therefore have related the Langmuir coefficients with lattice molar vol-
ume which we use in our calculations.

The relation presented in Figure 6.3 and in Eq. 6.5 to 6.11 support attaining
to any empirical relation between Rj and auc from measurement or molecular
simulations, e.g. linear, quadratic..., and relate these variables to hydrate molar
volume by changing Eq. 6.9 and 6.10.
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6.2 Volumetric properties for the empty lattice

We make a note here that the upper limit pressure in the Poynting integral,
which is the independent variable describing ∆µEL−PW

w in the left hand side of
Eq. 6.36 must consistently match PEL from Eq. 3.9 throughout derivation and
implementation. It is important to point this out because our model shows that
the pressure associated with the empty lattice PEL in thermodynamic properties
and phase equilibrium calculations is different than the actual hydrate pressure,
which in turn is the system pressure, while the literature currently relies on
P⇒ PH = PEL.

We now proceed to deal with an expression for VEL as function of tem-
perature and pressure in order to couple it to Eq. 6.36. Although literature has
shown possible theoretical models for an empty lattice volume (BELOSLUDOV
et al., 2002), we start with a simple correlation. We use an empirical expression
to relate pressure and temperature to the volume of the empty lattice, as a pure
water crystalline phase. The logic for this expression is the assumptions of con-
stant isothermal compressibility (k) and a parabolic behavior for the edge length
isobaric expansion, that is

VEL = (6.13)(
auc

0

Å
+ α1

(
T
K

)
+ α2

(
T
K

)2
)3

10−30NA

Nuc
w

(6.14)

exp
(
−k
(

P
Pa
− P0

Pa

))
(6.15)

where NA is the Avogadro number, auc
0 is the unit cell edge length parameter

corresponding to P = P0 and T = T0 = 0 K. The standard pressure (P0) of this
correlation needs not be the same as P0 in the expression for chemical potential
(∆µEL−Pw

w , Eq. 6.36).

This expression allows one to relate pressure and volume of the empty lat-
tice. However, experimental data is only available for actual clathrates. Recalling
that the hydrate modeled with the vdW&P model has volume VH equal to the
empty lattice reference VEL but not the same pressure, the correlation for VEL

can be regressed from crystallography measurements and correlations for the
hydrate volume VH by taking into consideration the pressure shift calculation.
We show a preliminary method for this regression in Section 6.6.
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6.3 Thermodynamic properties for compressible hy-

drates

We now perform the symbolic calculations to obtain derived properties
taking the dependency of qij with V/Nw into consideration. The expressions
for Nij, and therefore Θij, are the same as before, however the expression for
pressure and chemical potential, which are based on partial derivatives with
respect to V and Nw, respectively, will both get an extra contribution when
considering R dependent on V/Nw.

6.3.1 Hydrate pressure

We can calculate the hydrate pressure in the thermodynamic state de-
scribed by T, V, Nw and λj. Pressure is related to the partition function ac-
cording to

PH = −kBT

(
∂ Ψ

kBT

∂V

)
T,Nw,λ

(6.16)

Applying this operation and using Eq. 3.1 and 3.4 we obtain

PH =
∂−AEL

∂VEL − kBT ∑
j

[
νjNw

∂ln
(
1−∑i

[
Θij
])

∂VH

]
(6.17)

where the empty lattice term corresponds to the pure water empty lattice phase
pressure in the condition of V, Nw and T 3.9. We then define the difference in
pressure between hydrate having λ activity of guests and the empty lattice at
the same V, Nw and T condition by ∆PH−EL, which we refer to as the pressure
shift.

Applying the product rule and recalling Eq. (6.3) we obtain the final ex-
pression for the pressure shift as

∆PH−EL = PH − PEL = kBT

(
∑

j

[
νj ∑

i

[
Θij

(
∂ ln

(
Cij
)

∂VEL

)
T

]])
(6.18)

Note that in the case of considering that the Langmuir coefficient itself does
not vary with the lattice molar volume, a common simplification in current lit-
erature, the pressure shift contribution vanishes and the pressure in the empty
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lattice is equal to the actual hydrate pressure. The applicable form of this expres-
sion depends on either a partition function for the enclathrated molecules (Eq.
3.11) or an empirical expression for Langmuir coefficients fitted to either rigor-
ous model results (PARRISH and PRAUSNITZ, 1972) or to phase equilibrium
data.

Also note that in case the Rj were not related to V/Nw through our ge-
ometry considerations, as would be the case of a hydrate capable of some kind
of interstitial compressibility while keeping cages size constant, which is at best
a rough approximation for small compressibility, then the partial derivative of
Rj with respect to V/Nw, would vanish, and therefore that of Cij with respect
to V would also vanish, despite our fundamental consideration of Cij

(
Rj
)

and,
finally, ∆PH−EL would vanish naturally, as a limit case. This case is referred to
in the results and discussion section as the "Interstitial" model.

In the general case, one can say that the lattice does “see” the guest compo-
nent molecules, so much that (a) the pressure of the phase significantly increases
or decreases with the adsorption extent at constant volume or alternatively (b)
the volume does vary in function of occupancy at a constant pressure analysis.
The pressure shift expression can also be understood as

∆PH−EL = ∑
j

νj

(
∑

i

[(
Θij
)

Pcage
ij

(
∂Vcage

j

∂V

)])
(6.19)

if we have Pc
ij defined as

Pcage
ij = kBT

(
∂ ln

(
qij
)

∂Vcage
j

)
T

= kBT

(
∂ ln

(
Cij
)

∂Vcage
j

)
T

(6.20)

where, from the Lennard-Jones and Devonshire cell theory,

Vcage
j =

4
3

πR3
j (6.21)

The cage pressures in Eq. 6.20 carry the interpretation of pressure of the
probe enclathrated guest subsystem under the external field of a cage of type j.
From that, the pressure shift is reconstructed weighting each cage pressure with
its occupancy and relative differential contribution of that cage volume to the
phase volume. That is, what matters in this modeling is not how cage and total
volume add up, but how variations in each cage are related to total variation, as
in Section 6.1. This definition of a pressure from the partition function of parti-
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cles under an external field is usual in the confined fluids literature (BARBOSA
et al., 2016).

Note, however, that there is always a cage pressure, but there will only
exist a pressure shift if we do consider, in our modeling, a relation between the
cage volume and the phase molar volume, and it is only noticeable if occupancy
in those cages are noticeable.

For phase equilibrium calculations, it should be clear that the hydrate pres-
sure is equal to every other bulk phase pressure, as it is the thermodynamic
property conjugated to the hydrate volume.

6.3.2 Chemical potential of the host component

The chemical potential of water is related to the partition function accord-
ing to Eq. B.23. Note here that, because Langmuir coefficients depend on molar
volume, there will be a term for the derivatives of Langmuir coefficients with
mole numbers in accordance with Figure 6.3. We take that into account via
chain rule and product rule. Then, a contribution arises, which is equivalent to
the pressure shift contribution ∆PH−EL.

∆µH−EL
w = kBT

(
∑

j

[
νj ln

(
1−∑

i

[
Θij
])])

+ ∆PH−EL
(

V
Nw

)
(6.22)

This expression allows us to calculate chemical potential of water in the
hydrate relative to the empty lattice condition. In order to perform phase equi-
librium calculations, we need to model the chemical potential of the empty lat-
tice relative to a practical reference state: pure liquid water, conventional ice, or
pure ideal gas.

Now, consider the case where the cages radii (Rj) were considered as de-
pending on VEL through our geometry consideration, while the actual lattice
volume was considered independent of pressure. In this case, we are in a con-
sistent limit case where our model, despite calculating a pressure shift, yields
the same results for chemical potential as the standard model. This happens
because the new contribution in the ∆µH−EL expression (VEL ∆PH−EL) cancels
out with the new contribution in ∆µEL−Pw. The new contribution in ∆µEL−Pw is
that the Poynting integral in the current model is calculated using for the upper
limit PEL = PH− ∆PH−EL, while in the standard model it was PEL = PH. There-
fore the new contribution is difference between the Poynting integral in the new

68



model and in the old model, which is due to the difference in the upper limit of
integration. In the case of a constant V , this difference is simply (VEL ∆PH−EL).

∫ PH=PEL+∆PH−EL

PEL

[
VEL(T)

RT

]
dP =

VEL

RT
∆PH−EL (6.23)

The contribution of Θij will be the same in both cases, as it is depending
on Rj, which depends on VEL, and this is constant and the same in both cases.
This case is referred to in the results and discussion section as the "Limit Case"
modeling.

6.4 The Clapeyron equation

Previous works have considered dependency of R with V in the Langmuir
coefficients calculations, while not considering the pressure shift in ∆µH−EL or
∆µEL−PW expressions. Here, we show this leads to an inconsistency noticeable
in phase equilibrium calculations. According to the multicomponent and multi-
phase expression for the Clapeyron equation for univariant equilibrium,

dP
dT

=
|∆Huni|

T|∆Vuni|
(6.24)

where the right hand side of Eq. 6.24 represents the ratio of determinants shown
from the Gibbs-Duhem relation in TESTER and MODELL (1997b).

|∆Huni|
T|∆Vuni|

=

∣∣∣∣∣∣∣
−H H/T2 xH

w xH
g

−H L/T2 xL
w xL

g

−HV/T2 xV
w xV

g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−V H/T xH

w xH
g

−V L/T xL
w xL

g

−VV/T xV
w xV

g

∣∣∣∣∣∣∣
(6.25)

Considering the common approximation of xV
w = 0 and xL

g = 0, it simplifies
to

∆Vuni = V H −V LxH
w −VV xH

g (6.26)

and

∆Huni = H H − H LxH
w − HV xH

g (6.27)
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which are the variations in volume and enthalpy, respectively, on the dissociation
of 1 mol of hydrate into Pw and V.

As the slope (dP/dT) is equal to the ratio between |∆Huni| and T |∆Vuni|,
when |∆Vuni| vanishes, the phase equilibrium curve has vertical slope.

Here, we show the application of this test to the phase equilibrium diagram
of hydrate of a pseudo component based on ethane, as illustrated in Figure 6.4.

Figure 6.4: Consistency test with the Clapeyron equation. The continuous lines
are univariant three phase equilibrium lines between hydrate, liquid water and
a fluid phase rich in the guest component. The colors blue, orange and greed
correspond to the models Standard, Inconsistent and Pressure shift, respectively.
The circles in these curves mark the value for which the slope is vertical. The
corresponding dashed lines are the loci where the presented volume difference
|∆Vuni| is null. The gray line and point represent the gas-liquid transition curve
and critical point, respectively, for the fluid phase rich in the guest component.

The dotted curves are the contour level for |∆Vuni| = 0. The blue curve
represents the standard model, which does meet this Clapeyron equation cri-
teria. A model with lattice volume dependent Langmuir coefficients, shown in
orange, lacks this consistency if the derived properties equations are not revised.
Finally, the green curve results from the model proposed here. In conclusion, the
inclusion of volume dependent Langmuir coefficients achieves sensitivity of the
phase equilibrium behavior regarding the model parameters at high pressure,
and the revision of expressions ensures the model passes the Clapeyron equa-
tion consistency test and achieves sensitivity of the phase equilibrium behavior
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regarding the model parameters also at low pressure.

6.5 Dissociation enthalpy

We note that our modification influences the enthalpy calculations pre-
viously presented by a few works (AVLONITIS, 2005; JÄGER et al., 2016;
MEDEIROS et al., 2018). These values appear in the Clapeyron equation test
numerator, therefore they are related to the equilibrium curve slope, and they
are also important in energy balances in general. Internal energy is related to
the partition function according to

UH = −kBT2

(
∂ Ψ

kBT

∂T

)
V,N,λ

(6.28)

where, as in the pressure calculation, a contribution from the empty lattice parti-
tion (QEL) function arises, and it leads to the internal energy of the empty lattice
(UEL) at given T, V, Nw.

The internal energy of the hydrate can therefore be expressed relatively to
the internal energy of the empty lattice at a same T, V, Nw by

UH −UEL −∑i NiUPIG

NwkBT2 = ∑
i

[
∑

j

[
νjΘij

(
∂ ln

(
TCij

)
∂T

)]]
(6.29)

From that, we can derive enthalpy as

HH = UH + PHVH (6.30)

HEL = UEL + PELVEL (6.31)

V = VH = VEL (6.32)

and

PPIGVPIG = kBT (6.33)

Therefore
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HH − HEL −∑ NiHPIG

Nw
= +VEL∆PH−EL − kBT ∑i Ni

Nw

+ kBT2 ∑
i

[
∑

j

[
νjΘij

(
∂ ln

(
T Cij

)
∂T

)]]
(6.34)

This expression represents the enthalpy of adsorption of Ni molecules of
guest component on an empty lattice, from an ideal gas phase, per molecule of
water, which we name ∆HH−EL−IG.

In order to find an application for that expression, we combine it with
residual gas enthalpy at T, P, Ni, (∆HG−PIG) and enthalpy of transformation for
the lattice at T,PEL,Nw into stable pure liquid water at T, P, Nw (∆HEL−PW),
resulting in an expression for the enthalpy of dissociation (∆HG+PW−H). This
combination is done weighting the terms with the composition into

∆HG+PW−H

Nw
=

− ∆HH−EL−IG

Nw
+ ∑

i

[
xi∆HG−PIG

]
+ xw∆HEL−PW (6.35)

This is analogue to the expression presented in MEDEIROS et al. (2018),
but noting, now, that ∆HEL−PW represents a difference in enthalpy of an empty
lattice at PEL and a stable pure liquid water at P, and that ∆HH−EL−IG includes
a pressure shift contribution (VEL∆PH−EL).

The contribution of ∆HEL−PW can be expressed relatively to a standard
condition at T0 and P0 as

∆HEL−PW = ∆HEL−PW
00

+
∫ T

T0

∆CP
EL−PW
0 dT +

∫ PEL

P0

[
VEL(T)− T

(
∂V
∂T

)
N

]
dP (6.36)

As we noted in the expression for the chemical potential of water, in the
limiting case of constant lattice volume, our model yields the same results as the
standard model also for enthalpy calculations. If VEL is constant with respect to
T and P, then the pressure shift contribution in the expression for ∆HH−EL−IG

is equal to the factor removed from the volume integral for enthalpy in the
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expression for the ∆HEL−PW, as shown:

1
R T

∫ PH=PEL+∆PH−EL

PEL

[
VEL(T)− T

(
∂V
∂T

)
N

]
dP =

VEL

RT
∆PH−EL (6.37)

6.6 Parameterization

The reference condition for the properties of the empty lattice, with respect
to liquid water is taken as 273.15 K (0 ◦C) and 1.01325 × 105 Pa (1 atm), the
values for the properties ( ∆µEL−Pw

w,T0,P0
, ∆HEL−Pw

w,T0,P0
and ∆CP

EL−Pw
w,T0,P0

) were based on
those of PARRISH and PRAUSNITZ (1972) and HOLDER et al. (1988), while the
volume correlation is based on crystal data of KLAPPROTH et al. (2003) and
SHPAKOV et al. (1998). The parameters for the Lennard-Jones and Devonshire
cage of Kihara potential were based on PARRISH and PRAUSNITZ (1972). Here,
we consider the radii dependence on VEL making the Rj proportional to the
lattice edge parameter (cubic unit cell parameter) a0, using the radii from Parrish
and Prausnitz as our R0, i. e. R at T0 and P0.

A more detailed justification and the values used are described in detail in
the Appendix C.

6.7 Pressure shift solution algorithm

We have stated that our model has, intrinsically, an interdependence loop
in the variables Θij, VEL Rj, ∆PH−EL, PH and PEL. For that reason, it requires an
iterative method for convergence of equilibrium properties at a given condition.
In a simplest case, given a value for the empty lattice pressure PEL and fugacities
of all guest components, the calculation is straightforward:

Function calcPShift(T, PEL, f̂i):
Calculate V EL from T, PEL;
Calculate Rj from V EL;
Calculate Cij from T, Rj;
Calculate Θij from Ckj, f̂k;
Calculate

(
∂Cij/∂VEL)

T from T, Rj;
Calculate ∆PH−EL from T, Θij,

(
∂Cij/∂VEL)

T;

return ∆PH−EL

First, the pressure shift ∆PH−EL + PEL is calculated using
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calcPShift(T, PEL, f̂i), then the hydrate pressure is calculated from
PH = ∆PH−EL + PEL.

However, for direct specification of PH, an implicit solution method is re-
quired (convergePEL). We developed the following successive substitution algo-
rithm to converge the pressure shift and obtain thermodynamic properties of the
hydrate.

Function convergePEL(T, PH, f̂i):
guess: ∆PH−EL = 0
do

Calculate PEL = PH − ∆PH−EL

Update ∆PH−EL = calcPShift(T, PEL, f̂k)

Calculate RES =
([

∆PH−EL]k+1 −
[
∆PH−EL]k

)
/PH

loop while abs (RES) > 1× 10−9;

return PEL

The algorithm convergence analysis for three basis cases of pure methane,
ethane and carbon dioxide at T0 and P0 are shown in Figure 6.5.

Figure 6.5: Analysis of the pressure shift algorithm for given hydrate pressure:
pressure shift variable (∆PH−EL), residue (RES) and iteration for methane, ethane
and carbon dioxide single hydrates at the reference temperature T0 and reference
pressure P0. The values were sampled for each iteration and are connected by
straight lines for the visualization of trends.

These examples show that the residue is approximately linear with respect
to the variable ∆PH−EL, and that convergence is fast showing that the successive
substitution algorithm is sufficiently robust in this condition. The residue drops
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by a few orders of magnitude each iteration and the oscillation in the variable
around the solution value is quite small.

In the case where we wanted to perform calculations given the empty lat-
tice pressure, while associating fugacities of guest components with the system
pressure the unkwnown a priori, we used a slightly different successive substi-
tution algorithm (convergePH), as follows.

Function convergePH(T, PEL, EOS):
guess: ∆PH−EL = 0
do

Calculate PH = PEL + ∆PH−EL

Calculate f̂g from the EOS using P = PH and T = T
Update ∆PH−EL = calcPShift(T, PEL, f̂g)

Calculate RES =
([

∆PH−EL]k+1 −
[
∆PH−EL]k

)
/PH

loop while abs (RES) > 1× 10−9;

return PH

That was required for calculations of phase equilibrium using either the
ideal gas law or the equation of state of Peng and Robinson, in regions of high
pressure where it was observed that more than one root of PEL existed for a
given PH.

In this algorithm, a step control is required to prevent the hydrate pressure
PH from being negative, which does not characterize a physically meaningful
phase equilibrium solution, and can cause problems in the calculations of fu-
gacity coefficients in the equation of state for the fluid phase and in the residue
used in this algorithm.
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Chapter 7

Results and discussion of the
pressure shift model

Here we present results from using our model to hydrates of three com-
ponents: methane, ethane and CO2. We discuss the behavior captured by the
model and the variation of that behavior from guest to guest (different guest
dependent parameters).

All calculations of thermodynamic properties and phase equilibrium pre-
sented in this chapter were performed in the IPython environment for interactive
computing (PÉREZ and GRANGER, 2007), using the SciPy ecosystem of open-
source software for mathematics, science, and engineering to handle data arrays
(NumPy, OLIPHANT, 2006), estabilished numerical methods (SciPy, JONES
et al., 2001), and plots for both interactive data visualization and publication
(Matplotlib, HUNTER, 2007).

7.1 Lattice volume, cages radii and Langmuir coeffi-

cients.

The lattice volume VEL decreases as the lattice pressure PEL increases, ac-
cording to the constant compressibility correlation used. As the volume de-
creases, also does the cage radii according to the proportionality criteria used.
The behavior of Langmuir coefficients with respect to changes in radii depends
on the relative size of the guest molecule and the cage. We present calculations
of VEL, Rj and Cij for probe molecules of methane, ethane and carbon dioxide
at constant T, along a range of PEL in Figure 7.1.
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Figure 7.1: Lattice molar volume (VEL) and cage radii (Rj) (a) for small and
large cages, Langmuir coefficients (Cij) for several guest components (b) and
cage pressure (Pcage

ij ) (c). All calculated and plotted as function of empty lattice
pressure (PEL).

This analysis shows how, in our model, the Langmuir coefficients are indi-
rectly and naturally a function of the lattice pressure. The dashed lines represent
constant VEL, Rj and therefore constant Cij in order to grant some perspective on
the variations between the standard (constant volume and cages radii) and com-
pressible (varying volume and cages radii) models. From that, we see that the
current correlation for molar lattice volume describe significant compression for
condition of pressure above 1× 108 Pa. Langmuir coefficients calculations show
that methane molecules fits tightly in the small cages, so affinity decreases when
the cage size decreases, becoming too small to accommodate methane molecules
near 1× 109 Pa. In the same manner, both small and large cages are relatively
small regarding CO2 and ethane. On the other hand, the methane molecule fits
loosely in the large cage, so it is better adjusted above 1× 108 Pa as the cage
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shrinks, and the Cij increase.

7.2 Predictions of guest dependent lattice volume

We performed calculations of pressure shift for methane, carbon dioxide
and ethane at T0 and P0. For each component, we obtain different values of
∆PH−EL and, therefore, different lattice volume for the same hydrate pressure.
In the following calculations, for each component, we varied the parameters ai,
σi and εi in a range, one at a time, while keeping the other two parameters
constant. We plot both the resulting pressure shift and lattice volume versus
those parameters to investigate the sensitivities of the model. We also calculated
theoretical cage occupancy of the probe molecules to draw insight.

Figure 7.2: Pressure shift (∆PH−EL), lattice molar volume (VEL) and occupancy
Θij of a single hydrate of a probe guest versus the hard-core size (ai) cage poten-
tial parameter, holding the other cage potential parameters constant. The points
are the standard values for the parameters used in this work for methane, carbon
dioxide and ethane.
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Figure 7.3: Pressure shift (∆PH−EL), lattice molar volume (VEL) and occupancy
Θij of a single hydrate of a probe guest versus the soft-core size cage potential
parameter, holding the other cage potential parameters constant. The points are
the standard values for the parameters used in this work for methane, carbon
dioxide and ethane.
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Figure 7.4: Pressure shift, lattice molar volume and occupancy of probe molecule
hydrates versus the the energy cage potential parameter, holding the other cage
potential parameters constant. The points are the standard values for the pa-
rameters used in this work for methane, carbon dioxide and ethane.

In Figures 7.2, 7.3 and 7.4, the pressure shift and molar volume plots versus
cage potential parameters overlap. That happens because at constant T, the
molar lattice volume is expressed as

V̄EL
(

PEL
)
= V̄EL

0 e−k(PEL−P0) (7.1)

In this section, we are doing calculations at PH = P0, therefore PEL =

P0 − ∆PH−EL, consequently

V̄EL
(

PEL
)
= V̄EL

0 e−k(−∆PEL−P0) (7.2)

where k is the compressibility of the lattice from the correlation for the lattice
molar volume.

As k has order of magnitude of 1× 10−10 Pa−1 and ∆PH−EL has order of
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magnitude of 1× 108 Pa, these calculations are done well inside the range of
validity of the approximation ex = 1− x.

Therefore, in these series of calculations, VEL is approximately described
by

V̄EL
(

PEL
)
= V̄EL

0

(
1− k∆PEL−P0

)
(7.3)

If VEL is a linear function of ∆PH−EL, their plots versus parameter values
differ solely by a vertical axis offset and a multiplicative factor changing scale.
Then, in those plots, the two series overlap and it becomes a matter of reading
∆PEL−P0 in the left axis and V̄ in the right axis, in such a way, the horizontal ref-
erence line marks a pressure difference of zero on the left axis and the standard
lattice volume (V0) at PEL = P0 on the right axis.

Regarding the hardcore parameter of the Kihara potential (ai), in 7.2, note
that for large values the molecules will fit more tightly. Then ∆PEL−H becomes
increasingly positive, because it is proportional to the derivatives of Langmuir
coefficients with respect to radii, and in a tight cage an increase in Rj dimin-
ishes repulsive interactions, therefore increasing Cij. However, when the cages
become much smaller, occupancy drops sharply, therefore also does the ∆P and
VEL since the contributions in the pressure shift expression are weighted by the
occupancies.

For small values of ai, the cage is loose enough and derivatives of Langmuir
coefficients with respect to radii are now negative. Furthermore, for ai tending
to zero, the influence of σi dominates the behavior.

The analysis of small and large values of σi is mostly analogous to the
analysis of ai. The difference is that, for σi tending to zero, there will be no
interaction energy at all and both occupancy and the pressure shift drop to zero.

For both ai and σi, it can be seen that, for one desired value of occupancy
in a given cage, two values of the parameter (while keeping the other constant)
may seem plausible, however one may be discarded for yielding a significantly
different value for the occupancy in the other cage. Also, each value is located in
opposing sides regarding the stationary occupancy point, which means that they
are related to different domains of sign for the derivatives of Cij with respect to
Rj. As a result, each will have opposing contribution to ∆PH−EL for the cage
under analysis, and as a consequence, parameter values lower than the station-
ary point contribute to negative pressure shift and lower than standard molar
volume, while parameter values higher than the stationary point contribute to
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positive pressure shift and lattice molar volume higher than the reference con-
dition lattice molar volume.

Note that, for methane, at the standard parameter value, the pressure shift
is negative because the loose cage effect dominates. Then, as both cages become
small, relatively to increasing molecular size parameters, the pressure shift be-
comes positive.

Finally, increasing εi always increases attractive interaction, so it will in-
crease Langmuir coefficients and therefore occupancies. Changes to εi change
the magnitude of both Cij and

(
∂Cij/∂VEL)

T. The pressure shift is a result of
competing effects of Θij and

(
∂Cij/∂VEL)

T for each cage. Consequently, a steep
filling or emptying in Cij is usually reproduced in the ∆PH−EL and, if small
and large cages have opposing effects, as is the case for these calculations for
methane, it can be the case that either one of them dominates the behavior or
that they balance each other.

7.3 Disambiguation of parameters for large guests

Let us consider a clathrate of one single type of cage or, similarly, a sI hy-
drate of a component that is known to occupy only one type of cage. According
to the standard model, this component could, at first, have any of two values of
σi that yield the same Cij and, therefore, the same occupancy, the same ∆µH−EL

w

and, ultimately, the same equilibrium pressure. In this manner, measurements
of occupancy or phase equilibrium would not suffice to disambiguate these pos-
sible values for σi.

In the pressure shift model, however, we predict different ∆PH−EL and
therefore different VEL, either higher or lower than the standard condition molar
volume VEL

0 from the correlation with PEL = P0.

Consider as an illustrating case, a hydrate of a given guest component
having a structure where only enclathration in one type of cage is possible.
Calculations of the Langmuir coefficients and of the pressure shift were made
for a case as these (Figure 7.5). These calculations were performed using the
parameters of ethane in large cages of sI hydrates, while Langmuir coefficients
for the guest component in the small cages was set to zero.
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Figure 7.5: Disambiguation of molecular size parameters with the pressure shift
model at the standard temperature and pressure. The blue solid lines show cal-
culations for the standard model, while the orange solid lines show calculations
for the Pressure shift model for (a) Langmuir coefficients Cij and (b) Pressure
shift ∆PH−ELand lattice molar Volume VEL, both as function of the soft-core
Kihara parameter σi.

In the standard vdW&P model, given a constant value for cage radius, it
is not possible to disambiguate between two values of σi that generate the same
Langmuir coefficient because they also generate the same pressure PEL = PH

and there is no additional information (Figure 7.5a).

On the other hand, in the pressure shift model the two values of σi that
generate the same Langmuir coefficient will result in different molar lattice vol-
ume and cage radius at the same pressure P0, either lower or higher than VEL

0

due to different results for ∆PH−EL (Figure 7.5b).

This means that a measurement of VEL can disambiguate the parameteri-
zation of σi. In addition, the difference in molar volume varies with temperature
and pressure, thus influences the phase equilibrium curve at conditions of higher
temperature or pressure, as seen in the next section.
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7.4 Phase equilibrium

In this section, we compare the hydrate - liquid water - gas univariant
phase equilibrium and thermodynamic properties along this phase equilibrium
curve. We present results for six modeling strategies, as illustrated in Figure
7.6. They differ from one to another by combining assumptions in different
manners, thus considering some phenomena and neglecting others. All of these
calculations were performed using the Peng-Robinson equation of state for the
guest component fluid phase.

The goal, at the current stage of development of this work, is not to deter-
mine which model is closer to the experimental data, but rather to determine
the influence of each version on the null ∆Vuni line, the phase equilibrium curve
at both low and high pressure and thermodynamic consistency according to
the Clapeyron equation. This serves as an important insight for any posterior
attempt at the parameterization of the new model for an optimal fit to multi-
component experimental data.
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Figure 7.6: Comparison of different lattice behavior modeled in literature (Stan-
dard, Interstitial and Inconsistent) and proposed here (Pressure shift, Limit case,
Volume shift). In the Standard van der Waals and Platteuw model, there is
no change in the lattice volume. In the Interstitial compressibility model, lat-
tice volume changes, but the radii of cages remains constant. In the Inconsis-
tent compressibility models, lattice volume and cages radii change, but derived
properties based on isochoric hypothesis are used, therefore the modeling is
inconsistent. In the Pressure shift model proposed here, new expressions for
derived properties are taken from the partition function and a difference in hy-
drate and lattice pressure is calculated. In the Limit Case model, the pressure
shift expressions are used with an incompressible lattice, and yields the same
results as the standard model. In the Volume shift model, a preliminary regres-
sion method is used to change the lattice volume at the reference pressure, to
match the standard model hydrate volume for a system at that pressure.

The standard modeling approach is the vdW&P model assuming con-
stant cage radii and, independently, constant molar volume (MCKOY and
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SINANOĞLU, 1963; PARRISH and PRAUSNITZ, 1972; VAN DER WAALS and
PLATTEEUW, 1959).

The modeling approach we call interstitial assumes possible variations of
volume with lattice pressure, but neglecting variations of cage radius. This af-
fects Poynting integrals, while cage radii remains constant, therefore not affect-
ing Langmuir coefficients nor resulting in pressure shift contributions (KLAUDA
and SANDLER, 2000; MEDEIROS et al., 2018).

The modeling approach we labeled as inconsistent refers to a family of
models that use Langmuir coefficients dependent on molar volume, without re-
vising the expressions for derived properties (BALLARD and SLOAN JR., 2002;
HSIEH et al., 2012). Molar volume varies with temperature and pressure, also
does cage radii, but as the ∆PH−EL contribution is not acknowledged, the hy-
drate pressure PH is assumed equal to the reference lattice pressure PEL. They
are labeled inconsistent for failing to pass the Clapeyron equation test.

The pressure shift model is the approach proposed here, in which revis-
ing the expressions for derived properties, we showed a difference between the
pressure of actual clathrate and empty lattice having the same volume, and this
yielded new contributions in the expressions for several thermodynamic prop-
erties, as shown before.

The limit case model, as mentioned in the derivation section, refers to limit
case calculations performed here. In this case, the cages radii Rj physically
depend on VEL and the pressure shift expressions are considered but, at the
same time, a model for the empty lattice itself is chosen so that the lattice volume
is constant with respect to the lattice pressure.

At last, the volume shift corresponds to the pressure shift model with a
simple adjustment for the cubic unit cell edge parameter a0 in the lattice molar
volume correlation such that the lattice molar volume VEL at the reference con-
dition ( T0 and PEL = PH

0 − ∆PH−EL(T0, P0)) approximately corresponds to the
experimental hydrate volume at T0 and P0. This strategy is a preliminary fit for
qualitative purpose: we shift the cubic unit cell edge parameter a in the model
for the empty lattice in order to have that, at PH = P0 and PEL = P0 − ∆P0, the
resulting molar volume is equal to the molar volume given by the original cor-
relation of MEDEIROS et al. (2018) parameterized with hydrate data as function
of hydrate pressure.

V̄EL
(

aEL
0 , P = PEL

)
= V̄H

(
aH

0 , P = P0

)
(7.4)
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We perform the same shifting strategy for the radii, finding new Rj,0 pa-
rameter so that when PH is P0, the calculated Rj matches the original Rj,0, which
are supported by crystallography experimental data or fitted for optimal Lang-
muir coefficients calculations in the cell theory. We have developed a minor
iterative scheme for that preliminary shift.

The parameters in the volume shifted model are useful as initial estimates
or references for the setup of search limits in a parameter regression to generate
an optimized pressure shift model for applications.

In Figures 7.7 to 7.12 we show the phase equilibrium curve
(

PH,Pw,V × T
)

and the curve of null volume difference
(

P∆Vuni=0 × T
)

in phase equilibrium di-
agrams for all 6 models for each of methane, ethane and carbon dioxide, respec-
tively. In addition, we plot thermodynamic properties ∆Vuni, ∆Huni, ∆PH−EL

and Θij along the equilibrium points of the phase equilibrium curve.

In these figures, the volume shift model for all three components corre-
sponds to the pressure shift modeling with reference cages radii and unit cell
parameters shifted to represent methane hydrate original calculations. There-
fore, the calculations are based on adjusting three of the parameters of the model
based on data for methane hydrates, and of predictive nature for other compo-
nents.
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Figure 7.7: Phase equilibrium behavior of methane hydrates for the 6 models
under analysis. In each subfigure (a-f) the phase equilibrium curve and the
curve of null dissociation volume difference for one of the models is stressed
as a continuous black line, and the color scale changed to match the chemical
potential difference between hydrate and liquid water for that model. While the
curves for the other models are depicted as dashed and in different colors. The
gray points are experimental data from NIST in (KROENLEIN et al., 2015)
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Figure 7.8: Thermodynamics properties of methane hydrates for the 6 models
under analysis. Pressure shift (a), dissociation volume change (b), occupancy (b)
for the small cages (continous lines) and large cages (dashed lines) and dissoci-
ation enthalpy change (d).

For methane (Figure 7.7 and 7.8), the influence of the modifications is no-
ticeable at high pressure conditions. The standard and the limit case yield ex-
actly the same results for phase equilibrium on these numerical evaluations, even
though finite pressure shift values are calculate as shown in Figure (7.8b). In the
limiting case model, one can see that ∆PH−EL at first, increases as the pressure
increases (Figure 7.8b), and at sufficiently high pressure it decreases. This occurs
because as the molar volume is constant, the pressure shift is function of T only,
and following the phase equilibrium line, after the maximum temperature, an
increase in pressure leads to a lower temperature, while for other cases the effect
of temperature change is overshadowed but a much more prominent pressure
dependency.

For ethane and carbon dioxide (Figures 7.9 to 7.12), there are either cusps
or discontinuities corresponding to liquid-vapor transition in all plots. The dis-
continuities happen for ∆Vuni and ∆Huni because of the guest component fluid
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phase, which brings a contribution to the overall differences.

For Θij and ∆PH−EL, we obtain cusps because, as the slope of the phase
equilibrium curve is given by(

∂PH,Pw,V

∂T

)
=

∆Huni(
T ∆Vuni

) (7.5)

it means that a discontinuity in the right hand side ratio is equivalent to a dis-
continuity in the left hand side derivative and, consequently, the slope before
and after the fluid phase transition is suddenly different.

The curves for Θij and for ∆PH−EL as function of P and T along the phase
equilibrium loci were calculated individually from each point in the phase equi-
librium curve, but the curves for theses properties must exactly correspond to
the integration of(

∂Θ
∂P

)
uni

=

(
∂Θ
∂T

)
P

(
∂T
∂P

)
uni

(7.6)

and of(
∂∆P
∂P

)
uni

=

(
∂∆P
∂T

)
P

(
∂T
∂P

)
uni

(7.7)

respectively.

This shows how the cusp in the phase equilibrium curve is propagated to
the plots of Θij and ∆PH−EL versus PH.
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Figure 7.9: Phase equilibrium behavior of carbon dioxide hydrates for the 6
models under analysis. In each subfigure (a-f) the phase equilibrium curve and
the curve of null dissociation volume difference for one of the models is stressed
as a continuous black line, and the color scale changed to match the chemical
potential difference between hydrate and liquid water for that model. While the
curves for the other models are depicted as dashed and in different colors. The
gray points are experimental data from NIST in (KROENLEIN et al., 2015)
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Figure 7.10: Thermodynamics properties of carbon dioxide hydrates for the 6
models under analysis. Pressure shift (a), dissociation volume change (b), oc-
cupancy (b) for the small cages (continous lines) and large cages (dashed lines)
and dissociation enthalpy change (d).
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Figure 7.11: Phase equilibrium behavior of ethane hydrates for the 6 models
under analysis. In each subfigure (a-f) the phase equilibrium curve and the
curve of null dissociation volume difference for one of the models is stressed
as a continuous black line, and the color scale changed to match the chemical
potential difference between hydrate and liquid water for that model. While the
curves for the other models are depicted as dashed and in different colors. The
gray points are experimental data from NIST in (KROENLEIN et al., 2015)
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Figure 7.12: Thermodynamics properties of ethane hydrates for the 6 models
under analysis. Pressure shift (a), dissociation volume change (b), occupancy (b)
for the small cages (continous lines) and large cages (dashed lines) and dissoci-
ation enthalpy change (d).

Note that, for ethane (Figure 7.11 and 7.12), above 1× 108 Pa, all models
predict filling of the small cages, but the inconsistent model is the only one to
predict these cages becoming empty at pressure condition between 1× 108 Pa
and 1× 109 Pa due to cage compressibility. The pressure shift model predicts
that the phase is compressed to a lower extent, because of the reciprocal influ-
ence of the guest towards the cage being taken into consideration trough the re-
vised expressions. Additionally, the Clapeyron equation inconsistency is much
clearer in this third case because calculated ∆PH−EL values for ethane are, in
general, larger than for the other components.

Now, we examine the influence of the ambiguous values for σi discussed
before in the phase equilibrium behavior along a range of temperature and pres-
sure, considering the standard model and the pressure shift model, each with
its own pair of ambiguous σi. As before, the following calculations neglect occu-
pation of the small cage in order to provide insight into the potential for disam-
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biguation of the model in systems with this characteristics (e. g. hidroquinone
clathrates, which have only 1 type of cage).

Figure 7.13: Phase equilibrium behavior of a hydrates with a single type of
cage for the pressure shift and standard models and different values of σi that
generate the same values for Langmuir coefficient at P0.

In the standard model the results with either value of σi are almost indistin-
guishable because the Langmuir coefficients are equal for both parameter values
at T0 and, at higher temperature conditions in the range studied here, differ only
slightly. On the other hand, in the pressure shift model, at higher temperature
and pressure, the volume varies and, therefore, also the Langmuir coefficients.
And this variation is different for either values of σi, consequently, the phase
equilibrium curve is noticeably different for each σi value at higher temperature
and pressure.
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7.5 Swelling of the hydrate lattice

By means of performing calculations of pressure shift and molar volume
of several single guest hydrates, we observed the swelling phenomena depicted
in Figure 7.14. This phenomenon is characterized by an increase in the molar
volume of the lattice VEL, i. e., the ratio between extensive volume of the hydrate
VH and the number of molecules of water in that volume Nw, (Figure 7.14b) that
happens when the bulk and hydrate pressure are increased and the fugacity of
guests is also increased accordingly to an equation of state for the gas phase.

Figure 7.14: Swelling of hydrates at high pressure conditions using the proposed
pressure shift model.

The swelling phenomenon was observed in the calculations for all of
methane, ethane, carbon dioxide and hydrogen sulfide performed here. For
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each case, the swelling occurs in a different range of pressure, depending on the
relative size of the cages and guest molecules.

The reason for the swelling is that when the fugacity is increased, it fa-
vors the adsorption of more guest molecules on to the lattice, increasing the
occupancy (7.14d) and depending on the relative size of the cages and guest
molecules, this will either increase or reduce the pressure shift according to
Equation (B.70).

We concluded that the swelling phenomenon occurs whenever the pressure
shift, be it either positive or negative, increases steeply with an increase in the
pressure of the system, causing the lattice pressure to decrease while the hydrate
and bulk pressure increase and consequently causing the volume to increase,
according to the following reasoning.

Mathematically, the swelling phenomenon occurs whenever

(
∂V̄
∂P

)
T
> 0 (7.8)

where

P = PH = PEL + ∆PH−EL (7.9)

therefore

(
∂V̄
∂P

)
T
=

(
∂V̄

∂PEL

)
T

(
∂PEL

∂P

)
T
=

(
∂V̄

∂PEL

)
T

(
1−

(
∂∆PH−EL

∂P

)
T

)
> 0

(7.10)

As
(
∂V/∂PEL)

T is necessarily negative for isotropic mechanically stable
materials, in accordance with our correlation with constant positive compress-
ibility, it follows that

(
∂∆PH−EL

∂PEL

)
T
> 1 (7.11)

That is, when the value of the slope of the pressure shift versus hydrate
pressure (7.14a) is larger than 1, the swelling phenomenon occurs in the plot of
VEL versus PH.

In addition, we confirmed that there is no violation, regarding the actual
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hydrate, of the positive volume compressibility thermodynamic principle as-
sumed for the empty lattice, because the overall molar volume of the hydrate, as
given by

VH/

(
Nw + ∑

i
(Ni)

)
(7.12)

remains decreasing with increasing hydrate pressure (7.14c). The behavior cap-
tured by our model is equivalent to that observed experimentally for hidro-
quinone clathrate with up to triple cage occupation by hydrogen molecules
(ROZSA and STROBEL, 2014).

7.6 Iso-structural phase equilibrium

More investigations on the model capabilities showed possible iso-
structural phase equilibrium. The molar volume of the lattice versus hydrate
pressure shows a region where, for a given pressure, one, three or five molar
volume solutions exist. Figure 7.15 shows this behavior for hydrates with struc-
ture sI, with a value for the lattice compressibility ten times larger than that used
for the previous calculations, and fugacity of guest component given by the ideal
gas equation of state.
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Figure 7.15: Prediction of iso-structural phase equilibria for hydrates. Calcula-
tions of pressure shift, lattice molar volume, chemical potential difference for
water between hydrate and liquid states, occupancy of small and large cages, all
calculated and plotted versus system pressure. Calculations for single guest hy-
drates of methane, carbon dioxide, hydrogen sulfide, ethane, and the reference
empty lattice. Calculations show up to five roots for some properties at some
ranges of given system pressure.

Figure 7.16 shows the region of metastable iso-structural phase equilib-
rium for carbon dioxide hydrates: Figure 7.16b shows there are three solutions
for latttice volume for a value of hydrate pressure in a range. Figure 7.16c shows
that for two of them the chemical potential of water is the same. The plot of
chemical potential difference between hydrate and pure liquid water shows a
swallowtail behavior similar to cubic equations of state: when following chemi-
cal potential as function of pressure for low and high solutions of molar volume,
at constant temperature, there is one pressure where the chemical potential for
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both conditions is the same, which characterizes a phase equilibrium. This phase
equilibrium is at least metastable regarding these two hydrate phases, but not
necessarily a stable equilibrium state regarding other possible phases. As shown
in Figure 7.16d, this structural change is associated with a sudden change in the
occupancy of the small cages (full red line), the vertical lines mark the pressure
and pair of properties resulting in equal chemical potential. The molar volume
after the transition is such that the small cages are too small to accommodate
guest molecules. The dashed lines represent calculations of properties when oc-
cupancy of small cages is not allowed, it can be noted that after the transition the
calculations for the pressure shift model match the calculations with restriction
on the small cages.

Nevertheless, this result, qualitatively corroborates with results for
methane hydrates from HIRAI et al. (2000b) in which the molar volume after the
transition is such that the small cages are too small to accommodate the guest
molecules and from LAFOND et al. (2015). Finally, as this depends on lattice
and guest parameters, the phenomenon may be observed for clathrate of other
structures, other lattice component and other single or mixed guest components
at moderate pressures.
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Figure 7.16: Detailing iso-structural phase equilibria for a Carbon dioxide hy-
drate. The blue vertical line connects states with the same chemical potential
difference for water (c) at a given system pressure, with different lattice pressure
(a) lattice molar volume (b) and cages occupancy (d).

Finally, this behavior of the model indicates that a critical temperature
should exist for this iso-structural phase transition, as the lattice molar vol-
ume and occupancy of the two phases in equilibrium tend to the same values.
This behavior is shown in Figure 7.17, the calculations are qualitative, for a hy-
drate of carbon dioxide with lattice compressibility of 100 times the experimental
methane hydrate compressibility (Appendix C).
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Figure 7.17: Critical behavior of the iso-structural phase equilibria. Lattice molar
volume versus hydrate pressure calculated at various temperatures indicates the
existence of a critical temperature for this iso-structural phase transition.

The critical behavior shown in 7.17 is analogous to the critical behavior of
pure substances in liquid-vapor equilibrium as shown by cubic equations of state
in the P versus V plane. In the classical fluid phase equilibria scenario, two pure
fluid phases coexist along a univariant phase equilibria line of P versus T, up to
a critical point where the molar volume of both phases tend to the same value,
the critical volume. Analogously, in this scenario, three phases might coexist: a
gas or non polar liquid phase poor in water, and two hydrate phases with a given
structure and an different molar lattice volume and occupancy, assuming such
temperature and pressure region that the hydrate phases are more stable, relative
to a liquid water or ice phase. Then these three phases, in a two component
mixture, might coexist along a univariant phase equilibria line of P versus T,
up to a critical point where the lattice molar volume and occupancy of both
hydrate phases tend to the same values. For temperature conditions higher than
that, only one solution for lattice molar volume and occupoancy exist for a given
structure, at given system pressure. Then, as pressure increases, the occupancy
of the hydrate phase decreases smoothly, because the structure compressibility
effect and consequent reduction of the Langmuir coefficients overcome the effect
of increasing fugacity, that can be analyzed from the gas/non polar liquid phase.

Current calculations are of qualitative nature, they indicate that simulations
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for different parameter sets should help investigate which systems (host/guest)
might present a critical transition in a range of temperature and pressure that
could be observed experimentally.

7.7 Final remarks

In conclusion, our model is capable of solving a thermodynamic inconsis-
tency observed in phase equilibrium calculations and tested using a multicom-
ponent and multiphase Clapeyron equation. The model was capable of predict-
ing different hydrate volume depending on the guest components involved at a
same pressure. The model was also capable of predicting both the phenomena
of swelling of the lattice and of iso-structural phase equilibrium with sudden
change in composition and molar volume. We stress that our model extension
does not use any extra parameter other than those of the standard clathrate
modeling framework.
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Chapter 8

Conclusions

This work studied the thermodynamics of hydrates with two emphasis,
first the rigorous modeling based on the original van der Waals and Platteeuw
model, where we have proposed an extension for compressible clathrates, and
second, the development of a phase equilibria algorithm with special design for
hydrate systems.

Regarding the thermodynamic model, our extension of the van der Waals
and Platteuw model consists in obtaining derived properties thermodynami-
cally consistent with density dependent cage radii. Our model extension accom-
plishes four achievements. First, it fixes a common inconsistency in the state of
the art in modeling compressible clathrates, which is made evident by a anal-
ysis of phase equilibrium calculation with the Clapeyron equation. Second, it
naturally shows different volume for clathrates of different guests for the same
structure at the same temperature and pressure. Third, we have observed the
swelling phenomena, where the lattice molar volume increases when the system
pressure increases and adsorption of guest components is favored. And fourth,
we have observed a iso-structural equilibrium, so far in a meta-stable region,
for methane hydrate with sudden variation on volume and on the occupation
of the small cages. We stress that our model extension does not use any extra
parameter other than those of the standard clathrate modeling framework.

Perspectives for the research on the modeling of compressible clathrates
include:

• Further investigate the swelling phenomena, determination of systems
where it is more likely to occur and measure.

• Further investigate the isostructural equilibrium phenomena, calculations
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of isostructural equilibrium in stable condition, determination of systems
where it is more likely to occur and measure.

• Performing calculations for mixed hydrate systems to investigate the phase
equilibrium behavior.

• Performing parameter regression for the whole set of parameters of the
clathrate modeling framework with a variety of data and discuss the capa-
bility of the model of reducing parameter correlation, and the performance
of the pressure shift modification on mixtures and high pressure regions.

Regarding the multiphase flash algorithm study, the proposed flash algo-
rithm allows the generation of complex behavior phase diagrams, including sin-
gle and mixed hydrates retrograde dissociation, hydrate structures coexistence,
invariant points, thermodynamic inhibitor induced freezing point depression,
low water content gas sublimation line. The proposed improvements in the
algorithm contributes to both algorithm speed and robustness: The proposed
Newton-Raphson loop works on an equation system with less than half the size
of the originally used equation system. The residue equations whose solution
by numerical methods originally showed problems are now solved analytically.
Management in appearance/disappearance of phases based on the Gibbs phase
rule prevents occurrence of singular equation system for phase amounts calcu-
lations. Multi reference K-values allow the handling of phases which exclude
certain components. The special approach proposed to hydrate phase fugaci-
ties updating in the successive substitution method provided a generalization
of the algorithm, allowing the generation of shadow phase solution for the hy-
drate phases, consistent with the theory in which the algorithm is relied, when
calculations outside formation region are performed, and allowing the use of
hydrates as reference phases.

Perspectives for the research on phase equilibrium algorithms for hydrate
systems include

• Extension of the algorithm framework for isochoric (TVN) and isoenthalpic
(HVN) specifications, for direct application in processes or experiments
involving rigid vessels and hindered heat transfer.

• Extension of the algorithm to reactive systems, in special for aqueous
phases that contain weak acids and bases that may be present in the non-
polar fluid phase in molecular form, and salt mixtures from which many
crystal combinations may form.
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Appendix A

Derivation of the equations used in
the multiphase flash algorithm

This appendix presents detailed derivation of the equations used in the
algorithm. These are: multiphase Rachford-Rice equations, equations for up-
dating the composition, equations for updating the hydrate guests fugacity, and
equations for calculating the stability variables. We propose the use of multi-
reference in the derivation of these equations. The first three groups, when
applied to assumed present phases, K-values are the basis of our equilibrium
calculations, while the fourth group, together with the second and third groups
applied to not present phases are the basis of our stability analysis.

A.1 Gibbs energy minimization

The value of the composition and relative amount of each phase in the
state of equilibrium at specified temperature T, pressure P, and total amount of
each component Nc

i , corresponds to the global minimum in Gibbs energy, for a
number nc of components and of nf phases.

Assuming each phase in internal equilibrium, their individual thermody-
namic properties, as volume and chemical potential of each component, can be
calculated from these phases given value of composition. The independent vari-
ables for the optimization problem, in the multiphase scope, are the amount
ni,j of each component in each phase but in a reference phase (REF), of which,
component amounts ni,REF depends on the other phases component amounts
according to mass balance relations (Eq. A.1).
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Let c enumerate all components from 1 to nc, let f enumerate all phases
from 1 to nf, and let f 6=REF enumerate all phases in f , excluding the reference
phase REF.

ni,REF = Nc
i − ∑

j in f 6=REF

(
ni,j
)

for i in c (A.1)

Total Gibbs energy can be expressed with respect to the independent vari-
ables, after explicitation of chemical potential of each component in the reference
phase and substitution of the amount of each component in the reference phase
with the mass balance relations (Eq. A.1):

G = ∑
i in c

(Nc
i µi,REF) + ∑

i in c

 ∑
j in f 6=REF

(
ni,j
(
µi,j − µi,REF

)) (A.2)

In which ni,j are the total amount, in moles, and µi,j are the chemical po-
tential of index i component in index j phase, and Nc

i are the total amounts of
index i component in the system, which is a constant in flash calculations.

All remaining relevant dependent variables for mass balance in the multi-
phase scope are defined in the following equations (Eq. A.3 to A.9):

Total amount of components Nf
j in index phase are defined by:

Nf
j = ∑

i in c

(
ni,j
)

(A.3)

Mole fraction xi,j of index i component in index j phase are defined by:

xi,j =
ni,j

Nf
j

(A.4)

Hence restricted to:

∑
i in c

(
xi,j
)
= 1 for j in f (A.5)

Total amount of components NS in the system is defined by:

NS = ∑
i in c

(Nc
i ) (A.6)
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Relative amount β j of index j phase in the system is defined, for non-null
NS, by:

β j =
Nf

j

NS (A.7)

Therefore can be rewritten as

β j = ∑
i in c

(
ni,j

NS

)
(A.8)

Hence restricted to

∑
j in f

(
β j
)
= 1 (A.9)

Overall molar fraction zi of index i component is defined by:

zi =
Nc

i
NS (A.10)

The minimization problem is physically restricted to non-negative relative
amounts of phases (β j).

β j = ∑
i in c

(
ni,j

NS

)
≥ 0 for j in f 6=REF (A.11)

This inequality restriction can be converted to an equation restriction in the
independent variables, using the method of slack variables (ς), as follows:

ς2
j − ∑

i in c

(
ni,j

NS

)
= 0 for j in f 6=REF (A.12)

And then, the restricted minimization problem is converted in a unre-
stricted minimization problem using Lagrange method. By doing so, it becomes
possible to identify the minimum in Gibbs energy, if it is located in the bound-
ary of the domain of the independent variables established by the restriction, as
stationary points of the Lagrangian objective function ΛG.

ΛG = G + ∑
j in f 6=REF

(
λj

(
ς2

j − ∑
i in c

(
ni,j

NS

)))
(A.13)
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In which λj are the Lagrange multiplier. Also, the reference phase is, by
definition, present at equilibrium, so the restriction need not be applied for that
phase as well.

A.2 Stationary point calculation

The resolution of the minimization problem is pursued using the first order
optimization criteria, i.e. that the partial derivative of the objective function (ΛG)
with respect to each independent variable in [ς, λ, n] is zero, which leads to a
stationary point.

First, equating to zero the partial derivatives of ΛG with respect to each
Lagrangian multiplier λj restates the equality restriction previously imposed:

(
∂ΛG

∂λj

)
ς,n,λ 6=j

= ς2
j − ∑

i in c

(
ni,j

NS

)
= 0 for j in f 6=REF (A.14)

ς j =
√

β j for j in f 6=REF (A.15)

Second, equating to zero the partial derivatives of ΛG with respect to each
slack variable ς j yields a set of nonlinear residue equations that will be recalled
later.(

∂ΛG

∂ς j

)
ς 6=j,n,λ

= 2ς jλj = 0 for j in f 6=REF (A.16)

ς jλj = 0 for j in f 6=REF (A.17)

Third, equating to zero the partial derivatives of ΛG with respect to com-
ponent amounts ni,j yields the definition of the so called stability variable θj:(

∂ΛG

∂ni,j

)
ς,n 6=i,j,λ

=

(
∂G

∂ni,j

)
n 6=i,j

−
λj

NS = 0 (A.18)

for i in c, for j in f 6=REF

115



(
∂G

∂ni,j

)
n 6=i,j

=
λj

NS (A.19)

for i in c, for j in f 6=REF

Expansion of the left hand term in Eq. (A.18), based on Eq. (A.2), and
requiring application of product rule as the amount of an index i component in
an index j phase will affect every index k component in the phase.

(
∂G

∂ni,j

)
n 6=i,j

=
(
µi,j − µi,REF

)
+ ∑

k in c

nk,j

(
∂µk,j

∂ni,j

)
T,P,n 6=i,j

 (A.20)

for i in c, for j in f 6=REF

Ultimately, the second term in the right hand side of this equation is zero,
according to Gibbs-Duhem relation. So, at last, Equation (A.18) yields:

(
µi,j − µi,REF

)
=

λj

NS (A.21)

for i in c, for j in f 6=REF

From this result, the stability variable, θj, is defined:

θj =
λj

NSRT
for j in f 6=REF (A.22)

And consequently:

θj =

(
µi,j − µi,REF

)
RT

for j in f 6=REF (A.23)

It should be noted that this variable corresponds to a dimensionless sta-
tionary point tangent plane distance (TPDSP).

Invoking the definition of fugacity ratios from chemical potential differ-
ences, the stability variable can also be expressed as:

θj = ln

(
f̂i,j

f̂i,REF

)
for i in c, for j in f 6=REF (A.24)
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Equation (A.16) may, finally, be expressed, for non-negative β j, as:

ResS
j = β jθj = 0 for j in f 6=REF (A.25)

Eq. (A.26) constitutes a set of non-linear residue equations that will be used
directly in the development of the algorithm. Some aspects regarding this set
of equations should be stressed: In case θj is equal to zero, equality of chemical
potential applies, index j is in equilibrium with the remaining phases in the
system, and β j may be positive, corresponding to a present at equilibrium phase,
or also equal to zero, corresponding to an incipient condition phase.

In case an index j phase is not present at equilibrium, the corresponding
stability variable θj will be greater than zero and the composition of this phase
will correspond to a shadow phase.

A.3 Generalized RachfordRice equation

In this section, a set of equation similar to those from Rachford and
Rice method, however, generalized to include both present at equilibrium and
shadow phases. It may be worthy to remember that the equations that will be
obtained in this section are not additional equations required for closure of de-
grees of freedom, but rather alternative equations developed from the previous
equilibrium and stability equations, using relations from mass balance and from
molar fraction complementarity to allow the splitting of the system of equations
in two blocks of resolution.

Similarly to Rachford-Rice approach, we define K-values (distribution co-
efficients) Ki,j to represent relative affinity of a component between two phases.
However, we propose the definition of multi-reference K-values, that is, calcu-
lated with a different reference phase for each component, which is assumed
present and must not exclude the regarded component.

Ki,j =
φi,ref (i)

φi,j
(A.26)

So that Ki,j will be zero for index j phases excluding index i component,
and, otherwise, always lower than 1.
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While fugacity coefficients are expressed as:

φi,j =
f̂i,j

xi,jP
(A.27)

Using Equations (A.25), (A.27) and (A.28) for an index j phase and a refer-
ence phase for all components assumed present.

θref (i) = 0 for i in c (A.28)

xi,j = xi,ref (i)Ki,jeθj (A.29)

From this, it is possible to obtain explicit expressions for molar fraction
as functions of different variables. The intensive form of the multiphase mass
balance is expressed, having explicit the mass balance reference phase REF being
used for the dependent relative amount definition, as:

zi = ∑
j in f 6=REF

(
β jxi,j

)
+

1− ∑
j in f 6=REF

(
β j
) xi,REF for i in c (A.30)

In which index j counts only assumed present phases.

Substituting Eq. (A.29) in Eq. (A.30), and imposing that the ResS equations
are met, the summation can be expressed only in terms of assumed present
phases and then stability variables in the summation vanishes.

zi = xi,ref (i)

 ∑
j in f 6=REF

(
β jKi,j

)
+

1− ∑
j in f 6=REF

(
β j
)Ki,REF

 for i in c

(A.31)

From which we get:

xi,ref (i) =
zi

Ki,REF + ∑
l in f 6=REF

(βl (Ki,l − Ki,REF))
for i in c for j in f

(A.32)

Also, fugacity can be expressed as function of the variables used in this
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section, in the same way developed for molar fractions.

f̂i,j =
ziKi,jeθj

Ki,REF + ∑
l in f 6=REF

(βl (Ki,l − Ki,REF))
φi,jP for i in c for j in f

(A.33)

From Eq. (A.32) a set of non-linear residue equations will, be derived as
follows:

Subtracting Eq. (A.5) for an index j phase and for the reference phase
being used for the dependent relative amount definition, in combination with
Eq. (A.29), we get:

∑
i in c

(
xi,ref (i)

(
Ki,jeθj − Ki,REF

))
= 0 for j in f (A.34)

Substituting Eq. (A.32) in Eq. (A.34) we get the generalized Rachford-Rice
equation:

ResE
n = ∑

i in c

 zi
(
Ki,neθn − Ki,REF

)
Ki,REF + ∑

l in f 6=REF

(βl (Ki,l − Ki,REF))

 = 0 (A.35)

for i in c for j in f

However, for assumed present phases, θj = 0, in order to meet ResS
j ana-

lytically, therefore, let p contain the indexes for assumed present phases, i. e.
phases whose θ variables are equal to zero, then Resp

n is a nonlinear function of
β j only. And for shadow phases, θj can be evaluated explicitly. Therefore, we
derived, from these, the following two decoupled set of equations:

Resp
n = ∑

i in c

 zi (Ki,n − Ki,REF)

Ki,REF + ∑
l in p

(βl (Ki,l − Ki,REF))

 = 0 (A.36)

for i in c for j in f
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For assumed present phases, and

θj = ln


∑

i in c

 zi (Ki,REF)

Ki,REF + ∑
l in p

[βl (Ki,l − Ki,REF)]


∑

i in c

 zi
(
Ki,j
)

Ki,REF + ∑
l in p

[βl (Ki,l − Ki,REF)]




(A.37)

For assumed shadow phases. Partial derivatives of Resp with respect to β j

are taken analytically, and those with respect to T or P, are taken analytically in
chain rule as function of partial derivatives of φi,j, which in turn can be taken
numerically or analytically depending of the thermodynamic model implemen-
tation.
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Appendix B

Derivation of the pressure shift
model

In this appendix we present the detailed derivation of thermodynamics
properties from the semi-grand canonical partition function, taking into con-
sideration the dependence of the partition function for the single enclathrated
molecule under an external field with respect to lattice molar volume.

We start by recalling the basic equations composing the hydrate modeling
framework, as published in literature, and whose interpretations are discussed
in the body of this thesis.

B.1 The semi-grand canonical partition function

The semi-grand canonical partition function, ΞH = ΞH(T, VH, Nw, λ
)
, is a

function of the number of water molecules, Nw, the absolute activity (λi) defined
for each component (i) in the hydrate phase, the volume of the hydrate phase
VH and temperature T as independent variables. It is expressed as

ln(Ξ) = ln
(

QEL
)
+ ∑

j

[
νjNw ln

(
∑

i

[
qijλi

]
+ 1

)]
(B.1)

Where the absolute activity (λi) for each component in the hydrate phase
is defined from its chemical potential (µi).

µi = kBT ln (λi) (B.2)
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Where the proportionality factor (νj) is the ratio between number of cages
of each type and the number of water molecules in a hydrate unit cell for a given
geometry of the lattice structure.

The hydrate thermodynamic potential Ψ is related to Helmholtz energy A
according to

(Ψ) =

(
A−∑

i
(Niµi)

)
= (−kBT ln (Ξ)) (B.3)

and therefore it can be shown that its differential form, from classical ther-
modynamics is

d
Ψ

kBT
= − U

kBT2 dT − P
kBT

dV +
µw

kBT
dNw −∑

i
[Nid ln (λi)] (B.4)

B.2 The empty lattice reference

The empty lattice is described by the canonical partition function,
QEL(T, VEL, Nw

)
, as a function of temperature, volume and number of

molecules, being it pure in water. The volume of that describes the empty lattice
in this partition function is the same as the hydrate volume. The empty lattice
thermodynamic potential is related to Helmholtz energy according to

(A) = (−kB T ln (Q)) (B.5)

and therefore its differential form, from classical thermodynamics is

d
(

A
kBT

)
= − U

kBT2 dT − P
kBT

dV +
µw

kBT
dNw (B.6)

B.3 Cell theory and Langmuir coefficients

The single molecule canonical partition function under the mean field cage
potential, qi,j = qij

(
T, VH, Nw

)
, is a function of temperature, volume and number

of molecules of water.

Langmuir coefficients are defined from this partition function and fugacity
as

qijλi = Cij f̂i (B.7)
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And we can express qij from Cij, for convenient symbolic calculations as

qij = kBTΦiCij (B.8)

With Φi representing the configurational integral for internal degrees of
freedom (as rotation and vibration) and particle momentum (thermal de Broglie
wavelength).

We describe qij and Cij using the cage potential derived from the Kihara
pair interaction potential. The resulting expression for wij is given by

D1 =
ai

Rj
(B.9)

D2 = 1− r
Rj
− D1 (B.10)

D3 = 1 +
r

Rj
− D1 (B.11)

DEL(i) =
D2−i − D3−i

i
(B.12)

R1 =
σ12

i
R11

j
(B.13)

R2 =
σ6

i
R5

j
(B.14)

S1 = DEL(10) + D1DEL(11) (B.15)

S2 = DEL(4) + D1DEL(5) (B.16)

wij =
2Zjεi (R1S1− R2S2)

r
(B.17)

Where ai, σi and εi are the parameters from the Kihara pair interaction
potential of guest component (i) and a water molecule from the lattice. Mono-
spaced symbols represent non physically meaningful quantities used for break-
ing equations into smaller terms.

And the Langmuir Coefficients are calculated by the free volume integral
considering the cage potential according to

Cij =

∫ R−aj
0

[
exp

(−wij
kBT

)
4πr2

]
dr

kBT
(B.18)

Where the dependency of qij and Cij on V and Nw is solely by means of
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the cage radii R = R
(
VEL) as function of the lattice molar volume

VEL =
VH

Nw
(B.19)

B.4 Derivation of thermodynamic properties from

the partition function

We now proceed to obtain derived properties, specifically relations of guest
amount, pressure, chemical potential of water, internal energy and enthalpy.

According to Eq. B.4, we can calculate the following derived properties
from first derivatives of the partition function:

Ni = −
(

∂ Ψ
kBT

∂ ln (λi)

)
T,VH,Nw,λ 6=i

(B.20)

PH = −kBT

(
∂ Ψ

kBT

∂VH

)
T,Nw,λ

(B.21)

UH = −kBT2

(
∂ Ψ

kBT

∂T

)
VH,Nw,λ

(B.22)

µH
w = kBT

(
∂ Ψ

kBT

∂Nw

)
T,VH,λ

(B.23)

From these relations, we anticipate that we need to be able to calculate
derivatives of the Langmuir coefficients with respect to volume, number of
molecules of water and temperature.

The differential form of the Langmuir coefficients with respect to volume
and number of water molecules is

dCij(VH, Nw) =
∂Cij

∂VH dVH +
∂Cij

∂Nw
dNw (B.24)

However, as it is assumed that the Langmuir coefficients can be expressed
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solely as function of lattice molar volume this must be equivalent to

dCij

(
VH

Nw

)
=

∂Cij

∂
(

VH

Nw

)d
(

VH

Nw

)
(B.25)

Where the differential form of the lattice molar volume with respect to
Volume and number of water molecules is

d
(

VH

Nw

)
=

∂
(

VH

Nw

)
∂VH dVH +

∂
(

VH

Nw

)
∂Nw

dNw (B.26)

Therefore, executing the partial derivatives

d
(

VH

Nw

)
=

(
1

Nw

)
dVH +

(
−VH

N2
w

)
dNw (B.27)

Using this relation, we show that the differential form of the Langmuir
coefficients with respect to independently variable volume and number of moles
depending on the partial derivative of the Langmuir coefficients with lattice
molar volume takes a simple form for numerical calculations as follows.

dC =
∂Cij

∂V abbel

(
1

Nw
dVH +

−VH

N2
w

dNw

)
(B.28)

From this, we express the symbolic partial derivatives of Langmuir coeffi-
cients with respect to volume

(
∂Cij

∂VH

)
T,Nw

=

(
∂Cij

∂VEL

)
T

1
Nw

(B.29)

and with respect to number of water molecules

(
∂Cij

∂Nw

)
T,VH

=

(
∂Cij

∂VEL

)
T

−VH

(Nw)2 (B.30)

both depending on the partial derivative of the Langmuir coefficients with
respect only to lattice molar volume.

The derivatives of Langmuir coefficients with respect to lattice molar vol-
ume is related to the The derivatives of Langmuir coefficients with respect to
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cage radii according to

(
∂Cij

∂VEL

)
T
=

(
∂Cij

∂Rj

)
T

(
∂Rj

∂VEL

)
(B.31)

From Eq. B.8

(
∂ ln

(
qij
)

∂Rj

)
T

=
1

Cij

(
∂Cij

∂Rj

)
T

(B.32)

We can evaluate
(
∂Cij/∂Rj

)
T from Eq. B.18 using the Leibniz rule for dif-

ferentiation of integrals

∂

∂x

∫ u

l
f (t; x)dt =

f (u; x)
(

∂u
∂x

)
− f (l; x)

(
∂l
∂x

)
+
∫ u

l

(
∂ f
∂x

)
(t; x)dt (B.33)

with Rj for x, 0 for l, Rj − ai for u, and 4πr2e(−wij/kBT) for f .

Then

(
∂l
∂x

)
=

(
∂0

∂Rj

)
= 0 (B.34)

and

(
∂u
∂x

)
=

(
∂Rj − ai

∂Rj

)
= 1 (B.35)

however wij at the boundary is undetermined with limit at infinity

lim
r→Rj−ai

(
wij
)
→ ∞ (B.36)

therefore, the exponential factor, in the limit, is zero

f (l; x) = lim
wij→∞

(
4πr2e

−wij
kBT

)
→ 0 (B.37)

finally ,the derivatives in the third contribution are taken symbolically
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(
∂ f (t; x)

∂x

)
=

(
∂

∂Rj

)(
4πr2 exp

(
−wij

(
r; Rj

)
T

))
(B.38)

=
−4π

T
e

(
−wij
kBT

)(
∂wij

∂Rj

)
r2

Then

(
∂Cij

∂Rj

)
=

∫ Rj
0
−4πr2

kB T

(
∂wij
∂Rj

)
exp

(−wij(r)
kB T

)
dr

kB T
(B.39)

And the expression for
(
∂wij/∂Rj

)
is obtained symbolically from the afore-

mentioned expressions for wij

dD1dR = − ai

R2
j

(B.40)

dD3dR = 1− r
R2

j
− dD1dR (B.41)

dDELdR(i) =
−iD2−i−1dD2dR+ iD3−i−1dD3dR

i
(B.42)

dR1dR = −11

(
σi

Rj

)12

(B.43)

dR2dR = −5

(
σi

Rj

)−6

(B.44)

dS1dR = dDELdR(10) + dD1dRDEL(11) + D1dDELdR(11) (B.45)

dS2dR = dDELdR(4) + dD1dRDEL(5) + D1dDELdR(5) (B.46)(
∂wij/∂Rj

)
=

2Zjεi

r
(dR1dRS1− dR2dRS2+ R1dS1dR− R2dS2dR) (B.47)

Regarding derivatives with respect to temperature, from Eq. B.8

(
∂ ln

(
qij
)

∂T

)
Rj

=
1

Cij T

(
∂Cij T

∂T

)
Rj

+

(
∂ ln (Φi)

∂T

)
(B.48)

we evaluate again from Eq. B.18 using the Leibniz rule for differentiation
of integrals.

In this case, as neither of the limits Rj − ai and 0 are functions of T at
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constant VH and Nw.(
∂Cij T

∂T

)
Rj

=
1
kB

∫ Rj−ai

0

(
4πr2e(−wij/(kB T))(−wij/kB)(−1/(T2))

)
dr (B.49)

We evaluate the free volume integrals for all of Cij,
(
∂Cij/∂Rj

)
T and(

∂Cij T/∂T
)

Rj
using the Simpson method.

B.5 Number of guest component molecules

From Eq. B.20 one can relate number of guest with the partition function
as follows

Ni =

∂
(

∑j
[
νjNw ln

(
∑i
[
qijλi

]
+ 1
)])

∂ ln (λi)


T,VH,Nw,λ 6=i

(B.50)

Where QEL is not a function of guest activities λi, but each term in the cage
type summation is.

Ni = ∑
j

(∂
(
νjNw ln

(
∑i
[
qijλi

]
+ 1
))

∂ ln (λi)

)
T,VH,Nw,λ 6=i

 (B.51)

Taking the chain rule on the differentiation of the logarithm function

Ni = ∑
j

[
νjNw

1(
∑i
[
qijλi

]
+ 1
) (∑

i

[(
∂qijλi

∂ ln (λi)

)
T,VH,Nw,λ 6=i

])]
(B.52)

And rearranging the summations

Ni = ∑
i

∑
j

νjNw
qijλi(

∑
i

(
qijλi

)
+ 1
)

 (B.53)

The number of molecules per component Ni can be further decomposed
into number of guests per cage type, whose total recuperates Ni according to

Ni = ∑
j

(
Nij
)

(B.54)
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Therefore it can be shown that the number of molecules a component i in
a cage of type j is

Nij = νj Nw
qijλi

∑
i

(
qijλi

)
+ 1

(B.55)

from which it is convenient to define the occupancy fraction (Θij) of type j
cages by molecules of type i as

Θij = Nij/Nw =
qijλi

∑k
[
qkjλk

]
+ 1

=
Cij fi

∑k
[
Ckj fk

]
+ 1

(B.56)

We can use this definition to conveniently rewrite the partition function

Demonstration. Let ai and bj be arrays.

ai =
bi

∑k [bk] + 1

∑
i
[ai] =

∑i [bi]

∑k [bk] + 1

1−∑
k
[ak] = 1− ∑k [bk]

∑k [bk] + 1

1−∑
k
[ak] =

∑k [bk] + 1−∑k [bk]

∑k [bk] + 1

1−∑
k
[ak] =

1
∑k [bk] + 1

∑
k
[bk] + 1 =

1
1−∑k [ak]

Then, for ai ⇐ Θij and bi ⇐ Cij f̂i

∑
i

[
qijλi

]
+ 1 =

1
1−∑i

[
Θij
] (B.57)

And the resulting expression for the partition function is

−Ψ
kB T

= ln (Ξ) = − ln
(

QEL
)
−∑

j

[
νjNw ln

(
1−∑

i

[
Θij
])]

(B.58)
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Anticipating the need for derivatives of Θij for the obtainment of the re-
maining derived properties we take generic derivatives from Eq. B.56.

dΘij (V, T, Nw, λ) = d

(
qijλi

∑k
[
qkjλk

]
+ 1

)
(B.59)

then

dΘij (V, T, Nw, λ) =

λi

∑k
[
qkjλk

]
+ 1

dqij −
qijλi(

∑k
[
qkjλk

]
+ 1
)2 ∑

k
λkdqkj

−
qijλi(

∑k
[
qkjλk

]
+ 1
)2 ∑

k
qkjdλk

qij

∑k
[
qkjλk

]
+ 1

dλi (B.60)

Whose terms can be grouped into.

dΘij (V, T, Nw, λ) =(
Θij

(
1−∑

k
Θkj

))
d ln

(
qij
)
+

(
Θij

(
1−∑

k
Θkj

))
d ln (λi) (B.61)

B.6 Hydrate pressure

We can calculate the hydrate pressure in the thermodynamic state de-
scribed by T, VH, Nw and λi. Pressure is related to the partition function ac-
cording to Eq. B.21 and B.58

PH =

− kBT

−
∂−AEL

kBT

∂VH


T,Nw

+ ∑
j

(∂νjNw ln
(
1−∑i

[
Θij
])

∂VH

)
T,Nw,λi


(B.62)

Where the empty lattice corresponds to the pressure of the theoretical
empty lattice with the given volume, and is therefore named PEL.

PH = PEL − kBT

∑
j

νjNw

(
∂ ln

(
1−∑i

[
Θij
])

∂VH

)
T,Nw,λi

 (B.63)
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We define the difference ∆PH−EL, which we call the pressure shift,

∆PH−EL =

PH − PEL −−kBT

∑
j

νjNw

(
∂ ln

(
1−∑i

[
Θij
])

∂VH

)
T,Nw,λi

 (B.64)

Taking the chain rule on the differentiation of the logarithm function

∆PH−EL = kBT

(
∑

j

[
νjNw

1−∑i
[
Θij
] ∑

i

[(
∂Θij

∂VH

)
T,Nw,λi

]])
(B.65)

Where the derivatives of occupancy with respect to volume are taken from
Eq. B.60.

(
∂Θij

∂VH

)
T,Nw,λi

=

(
Θij

(
1−∑

k
Θkj

))(
∂ ln qij

∂VH

)
T,Nw,λ

(B.66)

Then, on substitution

∆PH−EL =

kBT ∑
j

νj Nw

1−∑i
[
Θij
] (∑

i

[(
Θij

(
1−∑

k
Θkj

))(
∂qij

∂VH

)
T,Nw,λi

])
(B.67)

This can be rearranged into

∆PH−EL =

kB T ∑
j

νj Nw ∑
i


Θij

(
1−∑

k

(
Θkj
))

1−∑
k

(
Θkj
) (

∂qij

∂VH

)
T,Nw,λi


 (B.68)

Where terms (1− ∑
k

(
Θij
)
) in the numerator and denominator cancel out

resulting in

∆PH−EL = kBT ∑
j

νjNw

(
∑

i

[(
Θij
) ( ∂qij

∂VH

)
T,Nw,λi

])
(B.69)
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Recalling Eq. B.29, B.31, and B.32.

∆PH−EL = kBT

(
∑

j

[
νj ∑

i

[
Θij

(
∂ ln

(
Cij
)

∂VEL

)
T

]])
(B.70)

Is the final form of the pressure shift expression.

Where the derivatives of Langmuir coefficients with respect to lattice molar
volume is taken from numerical calculations according to Eq. B.47

B.7 Chemical potential of the host component

The chemical potential of water is related to the partition function accord-
ing to Eq. B.23.

µH
w = kBT

(
∂AEL/kBT

∂Nw

)
V,T

+

kBT

∂
(

∑j
[
νj Nw ln

(
1−∑i

[
Θij
])])

∂Nw


V,T,λ

(B.71)

Taking the chain rule on the differentiation of the logarithm function

µH
w = µEL

w ++kBT ∑
j

[
νj ln

(
1−∑

i

[
Θij
])]

− kBT ∑
j

[
νjNw

1−∑i
[
Θij
] (∑

i

[(
∂Θij

∂Nw

)
T,VH,λi

]])
(B.72)

Where the derivatives of occupancy with respect to volume are taken from
Eq. B.60, B.32 and B.31.

µw(V, T, Nw, λ) = µEL
w +

kBT ∑
j

[
νj ln

(
1−∑

i

[
Θij
])]

+

VELkBT ∑
j

νj

∑
i

(Θij
) (∂ ln

(
Cij
)

∂VEL

)
T,Nw,λi

 (B.73)
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where Eq. B.70 contains a similar term which can be substituted here re-
sulting in

∆µH−EL
w =

kBT

(
∑

j

[
νj ln

(
1−∑

i

[
Θij
])])

+
(

VEL
)

∆PH−EL (B.74)

Which is the final form of the relative chemical potential of water in the
pressure shift model.

B.8 Internal energy

Internal energy is related to the partition function according to Eq. B.22.

UH = −kBT

−
∂−AEL

kBT

∂T


VEL,Nw

+

∑
j

(∂νjNw ln
(
1−∑i

[
Θij
])

∂T

)
VH,Nw,λi

 (B.75)

Where the derivatives of occupancy with respect to temperature are taken
from Eq. B.60 and B.48.

UH −UEL −∑i NiŪPIG

NwkBT2 = ∑
i

∑
j

νjΘij

(
∂ ln

(
T Cij

)
∂T

)
VH,Nw,λi

 (B.76)

Where the derivatives of
(
T Cij

)
with respect to T is taken from is taken

from numerical calculations according to Eq. B.49.
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Appendix C

Parameterization of the hydrate
modeling framework

In this appendix, we discuss the strategy used in the parameterization of
each item in the clathrate modeling framework. We explain the origin of the
parameters used and what adjustments were performed. So far, this work did
not conduct a parameter regression of the pressure shift model.

C.1 Formation properties for the empty lattice

The parameterization used for the empty lattice is based on the formation
properties estimated by Parrish and Prausnitz 1972.

In order to make the parameters used in their expression of the van der
Waals and Platteeuw model compatible with our expression, we have addressed
some consistency issues.

We choose as T0 and P0 values for the reference condition a value that is a
known liquid water-ice equilibrium point. This is important because in this way
a single value of ∆µEL−Pw

w,00 is sufficient for the consistent modeling of hydrate
in equilibrium with pure water condition being either liquid water or ice, as
µI

w,00 = µLw
w,00, we choose the arbitrary temperature of 273.15 K (0 ◦C), and the

corresponding ice-liquid equilibrium pressure of 1 atm (1.01325× 105Pa).

However, because the formation properties of Parrish and Prausnitz cor-
responded to values at a pressure of 0 Pa, we corrected theses values based on
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classical thermodynamics relations and approximate molar volume according to

d(∆µ) = ∆V dP (C.1)

and

d
(
∆H

)
=

(
∆V −

(
∂∆V
∂T

)
P

)
dP (C.2)

for a pure substance.

We corrected the parameters to the new reference condition using Parrish
and Prausnitz own estimate of ∆VEL−I of 3× 10−6m3 mol−1 and neglecting the(
∂V/∂T

)
P term. In this way, by changing the reference and and correcting the

parameters accordingly, we are essentially using the same parameter set as them
in our analyses. For the enthalpy of melting of ice to liquid water we used
the value presented by HOLDER et al. (1988). The corrected parameters values
actually varied little after theses calculations as shown in Table C.1.

Table C.1: Formation properties for the empty lattice with respect to ice and
pure liquid water.

sI-I Ref. I-Lw Ref.

Original
∆µw (0 ◦C, 0 atm) /J mol−1 1.26357× 103 [1]
∆Hw (0 ◦C, 0 atm) /J mol−1 1.15060× 103 [1] −6.00948× 103 [2]
∆Vw (0 ◦C, 0 atm) /m3 mol−1 3.0000× 10−6 [1] 1.6000× 10−6 [2]
Corrected
∆µw (0 ◦C, 1 atm) /J mol−1 1.26387× 103 0.00000
∆Hw (0 ◦C, 1 atm) /J mol−1 1.15090× 103 −6.00948× 103

References: [1] PARRISH and PRAUSNITZ (1972), [2] HOLDER et al. (1988)

C.2 Cell theory cages radii and Kihara potential

We evaluated phase equilibrium for methane, ethane and carbon dioxide
using cage radii, coordination numbers and Kihara potential parameters from
Parrish and Prausnitz. However, as we changed volumetric properties from a
constant difference ∆VsI−Lw of 4.6× 10−6m3 mol−1 to independent correlations
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for lattice and liquid water volumes, even at moderate pressure the phase equi-
librium curve changed significantly, so we performed preliminary regressions
to the Kihara parameters at pressure conditions below 1 × 107 Pa to be able
perform the analyses of our model extension having an approximately good fit
in the limit case. It is know that there are severe correlation issues between
ai, σi and εi when fitting all of them to hydrate equilibrium experimental data
(MEDEIROS et al., 2018). Therefore, for a preliminary adjustment, we chose to
fit only σi and εi, while holding ai constant based on Tee, Gotoh and Stewart
values (JOHN et al., 1985). These are presented in Table C.2.

Table C.2: Parameters for the Kihara cage potential.

CH4 CO2 C2H6
ai/Å 0.26 0.677 0.574
σi/Å 3.35 3.1306 3.3173
εi
kB

/K 148.91 165.0212 178.7843

We consider that the cage radii varies proportionally with the lattice edge
parameter, whose cube is proportional to the lattice molar volume as follows

R = R00
3

√
V̄

V̄00
(C.3)

Where, in the model we call the pressure shift model, R00 are the radii
presented by Parrish and Prausnitz and V00 is the lattice molar volume when
T = T0 and P = P0 according to the correlation for the lattice molar volume
presented next. On the other hand, in the model we call the volume shift model,
the R00 are adjusted and V00 is the lattice molar volume when T = T0 and
PEL = P0 according to the correlation for the lattice molar volume with its cubic
unit cell parameter a0 also adjusted, as will be discussed next.

C.3 Volumetric properties of the empty lattice

The calculations of volumetric properties for the empty lattice are per-
formed using correlations based on the works of KLAPPROTH et al. (2003) and
SHPAKOV et al. (1998).
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VH,CH4/Nw =(
aH

0

Å
+ α1

(
T
K

)
+ α2

(
T
K

)2
)3

10−30NA

Nuc
w

exp
(
−k
(

PH

Pa
− P0

Pa

))
(C.4)

as function of the hydrate pressure

These correlations correspond to measurements on methane hydrates, all
calculations using the pressure shift model have this correlation assigned to the
empty lattice, and therefore predict different values of lattice molar volume for
the actual methane hydrates.

VEL =(
aH

0

Å
+ α1

(
T
K

)
+ α2

(
T
K

)2
)3

10−30NA

Nuc
w

exp
(
−k
(

PEL

Pa
− P0

Pa

))
(C.5)

as function of the pressure of the empty lattice reference.

The parameters are presented in Table C.3

Table C.3: Parameter from the methane hydrate molar volume correlation

Parameter Value
aH

0 /Å 10.18
α1 5.39× 10−5

α2 1.78× 10−6

k/Pa−1 1.098× 10−10

P0/Pa 1.01325× 105

In order to observe the influence of the pressure shift correction in the
phase equilibrium calculations, deducting the change in volume , i. e. to com-
pare a standard and a corrected model being both in agreement with actual
methane hydrate volume at T0, P0, we introduced the volume shift model.

In the volume shift model we changed the values of a0 and R0, the liquid
effect being that when the actual hydrate pressure is PH = P0, the calculated
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volume of the adjusted correlation is close to the experimental volume, according
to the original correlation at P = P0.

VEL =(
aEL

0

Å
+ α1

(
T
K

)
+ α2

(
T
K

)2
)3

10−30NA

Nuc
w

exp
(
−k
(

PEL

Pa
− P0

Pa

))
(C.6)

Not intending to perform parameter regression at this point, we developed
a simple iterative scheme to adjust these parameters to have an exact correspon-
dence solely at T0, P0, and approximate correspondence in its vicinity.

C.3.1 Volume shift algorithm

The premise is that, at PH = P = P0, f̂i = P0, and T = T0, the volume
calculated by the active correlation for the empty lattice, having the parameter
aEL

0 , should be equal to the volume calculated by the experimental correlation
for actual methane hydrate, having the parameter aH

0 .

V̄EL
(

aEL
0 , PEL

0

)
= V̄H

(
aH

0 , P0

)
(C.7)

where PEL
0 is related to P0 according to the pressure shift calculation

PEL
0 = P0 − ∆PH−EL

0 (C.8)

This can be alternatively expressed from the equivalence of values for the
edge parameters

aEL
(

aEL
0 , PEL

0

)
= aH

(
aH

0 , P0

)
(C.9)

The same logic is applied for the obtainment of a corrected value for R0,
here called RVS

0 such that when PH = P = P0, R = RPP
0 . While

R = RVS
0

V
V0

(C.10)
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and V0 is defined as

V0 = VEL
(

PEL = P0

)
(C.11)

The proposed algorithm is implemented as follows

Function calcVolumeShift(P0, T0):
Let the hydrate pressure assume the value of the reference pressure

PH = P = P0;
Estimate the fugacity of the guest component with the system pressure:

f̂ = P
Let the system temperature be the reference temperature: T = T0

Guess the cubit unit cell edge parameter for the correlation for the
empty lattice as equal to that for the correlation for the actual hydrate:
a0 = aH

0

Guess the cages radii in the reference condition for the empty lattice as
equal to that for the actual hydrate: R0 = RPP

0

do

Calculate using the pressure shift algorithm:
[
PEL

0
]k

= PEL([a0]
k , P0)

Calculate a new a0 and new R0 for both cage types:
fT = ∑

i

[
αiTi

]
(C.12)

[a0]
k+1 =

(
[a0]

k + fT
)(

e−k
(
[PEL]

k−P0

))( 1
3)
− fT (C.13)

[
Rj,0
]k+1

=
([

Rj,0
]k
)(

e−k
(
[PEL]

k−P0

))( 1
3)

(C.14)

Calculate the residue:

RES⇐

([
PEL

0
]k −

[
PEL

0
]k−1

)
P0

(C.15)

loop while abs (RES) > 1× 10−9;
Record solution:

aEL
0 = a∞

0 (C.16)

RVS
0 = R∞

0 (C.17)

return aEL
0 , RVS

0

The effect of this method is illustrated in Figure C.1
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Figure C.1: Volume calculations for four iterations of the volume shift algorithm.

The dotted curve is the correlation based on experimental data for molar
volume of methane hydrate. The Pshift curve is the prediction of volume versus
system pressure for the pressure shift model, for which the methane hydrate
correlation was fed as correlation for the empty lattice. The Vshift 1, 2 and
N are the calculated molar volume for the volume shift model after 1, 2 and
N iterations, N being a number of iterations required to achieve convergence,
which was 4 in this test case.

For applications of the pressure shift model in the design of products and
processes, a parameter regression is required to generate an optimized pressure
shift model. The parameters in the volume shifted model are useful as initial
estimates or references for the setup of search limits in that stage.

C.4 Guest component fugacity

For phase equilibrium calculations with either a gas or liquid phase rich in
guest components, we used the equation of state of Peng and Robinson, accord-
ing to REID et al. (1987).

C.5 Volumetric properties for liquid water

The liquid water molar volume was calculated from a correlation based on
experimental data of HILBERT et al. (1981) and LIDE (2005). The corresponding
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parameters are presented in Table C.4.

V̄Lw(
m3mol−1

) =

(
αLw

0 + αLw
1

(
T
K

)
+ αLw

2

(
T
K

)2
)

exp
(

kLw
(

P− PLw
0

))
(C.18)

Table C.4: Parameters of the molar volume correlation for pure liquid water

Parameter Value
αLw

0 2.61517× 10−5

αLw
1 5.771157× 108

αLw
2 1.00453× 10−10

kLw/Pa−1 3.30859× 10−10

PLw
0 /Pa 1.01325× 105
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