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RESUMO 

 

Tendo em conta a crescente demanda por água tanto urbana quanto industrial, e 

considerando a atual escassez de água doce, geralmente extraída de reservatórios superficiais e 

subterrâneos, é necessário considerar a água salgada, devidamente tratada, como um recurso 

viável para consumo humano e industrial. 

As tecnologias de dessalinização disponíveis no mercado podem ser classificadas como 

em térmicas e de membranas. A osmose inversa (RO), o flash multi-estágio (MSF) e a 

destilação multi-efeito (MED) são as principais tecnologias comerciais de dessalinização, sendo 

a osmose inversa a de maior crescimento. 

As plantas de osmose inversa têm sido tradicionalmente projetadas pelos fabricantes 

usando abordagens empíricas e heurísticas. No entanto, o desempenho de custo da 

dessalinização por osmose inversa, é sensível aos parâmetros de projeto e às condições de 

operação e, portanto, é necessário dar atenção à obtenção de projetos com ótimo custo-

benefício. 

O problema da síntese de uma rede de osmose inversa (RON) consiste em obter uma 

solução econômica baseada em valores ótimos das seguintes variáveis: número de estágios, 

número de vasos de pressão por estágio, número de módulos de membrana por vaso de pressão, 

número e tipo de equipamentos auxiliares, bem como as variáveis operacionais para todos os 

dispositivos da rede, este problema poderia ser formulado como uma programação não linear 

inteira mista (MINLP). 

Neste trabalho, propõe-se uma metodologia para resolver um modelo matemático não-

linear para o projeto ótimo de redes de osmose inversa, que melhore as deficiências do 

desempenho computacional e, às vezes, falhas de convergência de software comercias para 

resolver os modelos rigorosos MINLP. A estratégia consiste no uso de um algoritmo genético 

para obter valores iniciais para um modelo completo não linear MINLP. Além disso, como o 

algoritmo genético baseado nas equações do modelo rigoroso é muito lento, o uso de meta-

modelos para reduzir a complexidade matemática e acelerar consideravelmente a corrida é 

proposto. O efeito da vazão de alimentação, a concentração de água do mar, o número de 

estágios de osmose inversa e o número máximo de módulos de membrana em cada vaso de 

pressão no custo total anualizado da planta é explorado. 

 

Palavras-chave: Osmose Inversa, optimização, meta-modelos, MINLP. 

 



 

 
 

ABSTRACT 

 

The increasing demand for freshwater both urban and industrial, and considering the 

current scarcity of freshwater, usually extracted from superficial and underground reservoirs, it 

is necessary to consider salt water, properly treated, as a viable resource for human and 

industrial consumption.  

The available desalination technologies in the market can be classified as thermal-based 

and membrane-based processes. Reverse osmosis (RO), multi-stage flash (MSF), and multi-

effect distillation (MED) are the main commercial desalination technologies, with RO being 

the fastest growing (GHAFFOUR et al., 2015). 

Desalination plants using RO have been traditionally designed by manufacturers using 

empirical approaches and heuristics (GHOBEITY; MITSOS, 2014). However, the cost 

performance of RO desalination is sensitive to the design parameters and operating conditions 

(CHOI; KIM, 2015) and therefore,  attention needs to be placed in obtaining cost-optimal 

designs.  

The problem of synthesizing a reverse osmosis network (RON) consists of obtaining a 

cost-effective solution based on optimum values of the following:  number of stages, number 

of pressure vessels per stage, number of modules per pressure vessel, number and type of 

auxiliary equipment, as well as the operational variables for all the devices of the network, this 

problem could be formulated as a mixed integer nonlinear programming (MINLP). 

In this work, a methodology to solve a nonlinear mathematical model for the optimal 

design of RO networks, which ameliorates the shortcomings of the computational performance 

and sometimes convergence failures of commercial software to solve the rigorous MINLP 

models is proposed. The strategy consists of the use of a genetic algorithm to obtain initial 

values for a full nonlinear MINLP model. In addition, because the genetic algorithm based on 

the rigorous model equations is insurmountably slow, the use of metamodels to reduce the 

mathematical complexity and considerably speed up the run is proposed. The effect of the feed 

flow, seawater concentration, number of reverse osmosis stages, and the maximum number of 

membrane modules in each pressure vessel on the total annualized cost of the plant is explored. 

 

Keywords: Reverse osmosis network, optimization, metamodels, MINLP. 
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1 INTRODUCTION 

 
Industrialization and urbanization has caused a per capita increase by fresh water 

making the desalination a competitive technology for the generation of pure water from the sea 

water, as well as other low-quality water containing salts and other dissolved solids (KUCERA, 

2014).  

The available desalination technologies in the market can be classified as thermal-based 

and membrane-based processes. Reverse osmosis (RO), multi-stage flash (MSF), and multi-

effect distillation (MED) are the main commercial desalination technologies, with RO being 

the fastest growing (GHAFFOUR et al., 2015). This last technology (RO) is, in most cases, the 

technology of choice for seawater desalination in places where inexpensive waste heat is not 

available.  

Desalination plants using RO have been traditionally designed by manufacturers using 

empirical approaches and heuristics (GHOBEITY; MITSOS, 2014). However, the cost 

performance of RO desalination is sensitive to the design parameters and operating conditions 

(CHOI; KIM, 2015) and therefore,  attention needs to be placed in obtaining cost-optimal 

designs.  

The problem of synthesizing a reverse osmosis network (RON) consists of obtaining a 

cost-effective solution based on optimum values of the following:  number of stages, number 

of pressure vessels per stage, number of modules per pressure vessel, number and type of 

auxiliary equipment, as well as the operational variables for all the devices of the network.  

After the early works of Evangelista (1985), El-Halwagi (1997) and Voros et al. (1996; 

1997) many papers have followed (MASKAN et al., 2000; MARCOVECCHIO; AGUIRRE; 

SCENNA, 2005; GERALDES; PEREIRA; NORBERTA DE PINHO, 2005; LU, Y. Y. et al., 

2007; VINCE et al., 2008; KIM, Y. S. Y. M. et al., 2009;  OH; HWANG; LEE, 2009;), mainly 

using the solution-diffusion model proposed by Al-Bastaki et al. (2000), a model that includes 

the effect of concentration polarization, which eliminates the problem of significant 

overestimation of the total recovery (WANG. et al., 2014) and the economic model from Malek 

et al. (1996).  

Many authors proposed solving the problem of the design of a RON using  Mixed 

Integer Nonlinear Programming (MINLP) or Nonlinear Programming (NLP) (GHOBEITY; 

MITSOS, 2014). For example, Du et al. (2012) used a two-stage superstructure representation 

and solved the resulting MINLP using the solvers CPLEX/MINOS using several starting points 
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to obtain the best solution. However, it was not clarified how to generate these starting points.  

Sassi and Mujtaba (2012) proposed a MINLP model and solved the problem using an outer 

approximation algorithm within gPROMS to evaluate the effects of temperature and salt 

concentration in the feed current. The work was based on generating “various structures and 

design alternatives that are all candidates for a feasible and optimal solution”, without 

specifying how their initial values are obtained.  Alnouri and Linke (2012) explored different 

specific RON structures and they optimized each using the ‘‘what’sBest’’ Mixed-Integer 

Global Solver for Microsoft Excel by LINDO Systems Inc. The solver is global and does not 

require initial points. The authors used “reduced super-structures resembling fundamentally 

distinct design classes”.  Lu et al. (2013) obtained an optimal RON using a two stages RON 

structure and used an  MINLP technique with several starting points obtained from an ad-hoc 

preliminary simulation. Finally, Skyborowsky et al. (2012) proposed an optimization strategy 

with a special initialization scheme where a feasible initial solution is obtained in two steps: 

first, all variables are initialized with reasonable values (some obtained by heuristics) and then 

a solution is obtained using SBB and SNOPT solvers. These local minima are reportedly 

obtained within a few minutes of computation.  It was also reported an attempt to solve a RON 

using the global solver Baron indicating that the solver finished after 240 hours with a relative 

gap of 15.66%. 

All the aforementioned works have a few things in common: it is observed the 

complexity of the problem modeling and the difficulty of the solution procedure that stem from 

the nonlinearities associated with the concentration polarization model.  In some cases, it is not 

shown in detail what pre-processing was done and how the initial data and/or the computing 

time were obtained. Regarding computing time, it varies:  one to few minutes (SKIBOROWSKI 

et al., 2012), 3 to 16 minutes (MARCOVECCHIO; AGUIRRE; SCENNA, 2005) or 5 to 28 

hours (DU et al., 2012).  The experience indicates that without the initial values, there is no 

convergence in several solvers. In addition, although computational time is not critical in design 

procedures, it is believed it ought to be reasonable. In some cases, the computational time is 

unacceptable (DU et al., 2012), as it is in the order of days. In this work, an intend to ameliorate 

these shortcomings providing these initial data systematically and reducing the computing time 

to the order of minutes is done.    

 To aid in this work, surrogate models often called Metamodels are also used, which 

have been proposed to address the issue of model complexity and the associated difficulties of 

convergence when poor or no initial points are given. Such metamodels are sets of equations of 
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simple structure (low-order polynomial regression, and Kriging or Gaussian process 

(KLEIJNEN, 2017)) that facilitate an increased computational performance (mostly time 

(MAHMOUDI; TRIVAUDEY; BOUHADDI, 2016)). It can be built with the information of 

the rigorous method and their functions approximate well the image of the more complicated 

models (PRACTICE, 2015). Metamodels were implemented in the optimization for heat 

exchanger network (PSALTIS; SINOQUET; PAGOT, 2016; WEN et al., 2016), also, the 

optimization of water infrastructure planning (BEH et al., 2017; BROAD; DANDY; MAIER, 

2015), in stochastic structural optimization (BUCHER, 2017) and building energy performance 

(JAFFAL; INARD, 2017).   

In this work, the RON optimization problem is formulated as an MINLP problem that 

minimizes the total annualized cost (TAC). First, the model is solved using a genetic algorithm, 

which provides good initial values for the rigorous MINLP model. As it shall be observed, a 

genetic algorithm, using the full non-linear and rigorous equations is computationally very 

expensive, while the MINLP is rather fast when good initial values are provided. This work 

will show that replacing the use of rigorous equations of the model by the use of a metamodel 

in genetic algorithm speeds up the solution time orders of magnitude and provides a similar 

solution. 

The previously described solution methodology was also used to optimize a reverse 

osmosis (RO) – pressure retarded osmosis (PRO) hybrid superstructure. 

1.1 Document description: 

 
This work is organized in eight (8) chapters. In chapter 2 is presented a literature review, 

where the most relevant desalination technologies are presented, the main transport phenomena 

for reverse osmosis and pressure retarded osmosis are discussed, and finally, previous related 

optimization works are cited. 

In chapter 3 are presented the general and specific objectives of this thesis. 

Chapter 4 denominated methodology presents the detailed mathematical model for the 

RON optimization, and the two optimization methodologies used: bound contraction and the 

new stochastic-deterministic technique proposed. 

Chapter 5 presents the bound contraction methodology for the RON optimization results, 

with the intention to emphasize the difficulties of the mathematical problem. 

Chapter 6 presents the new stochastic-deterministic methodology for the RON 

optimization, successfully implemented to explore the influence of the feed flow, seawater 
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concentration, number of reverse osmosis stages, and the maximum number of membrane 

modules in each pressure vessel on the total annualized cost of the plant. 

Chapter 7 shows the optimization results of the proposed solution methodology for a 

hybrid RO+PRO superstructure. 

And finally, chapter 8 presents general conclusions and some recommendations for future 

continuity of this work. 

1.2   Literature contributions: 

 
After implementing both proposed methodologies, bound contraction and the stochastic-

deterministic methodology for the optimal design of a reverse osmosis network, an international 

paper was published and a second one using the proposed methodology for a hybrid RO+PRO 

superstructure will be submitted. 

 

Published paper: 

1. PARRA, A.; NORIEGA, M.; YOKOYAMA, L.; BAGAJEWICZ, M. J. “Reverse 

Osmosis Network Rigorous Design Optimization”, Industrial & Engineering 

Chemistry Research, v. 58, p. 3060–3071, 2019. ISSN: 0888-5885, DOI: 

10.1021/acs.iecr.8b02639. 

 

Paper to be submitted: 

1. “Reverse Osmosis Network integrated with Pressure Retarded Osmosis: Rigorous 

Design Optimization”, Industrial & Engineering Chemistry Research. 
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2 LITERATURE REVIEW 

 

2.1 Mathematical models:  

 
The mathematical model of a system is a set of mathematical relations, which represent 

an abstraction of a real system that is being studied. Mathematical models can be developed 

using (1) fundamental approaches (theories accepted by science used to obtain equations), (2) 

empirical methods (input and output data are used in conjunction with the principles of 

statistical analysis to generate empirical models also called “black box models” (3) methods 

based on analogy (the analogy is used to determine the essential characteristics of the system 

of interest from a well understood similar system) (FLOUDAS, C. a, 1995). 

A mathematical model of a system usually has three fundamental elements: 

(1) Variables: the variables can take different values and their values define different states of 

the system, they can be continuous, integer, or a mix of both.   

(2) Parameters: are fixed values, that are data provided externally. Different case studies have 

different parameters values.  

(3) Mathematical relations and constraints: these can be classified as equalities, inequalities and 

logical conditions. 

Equalities are usually related to mass balances, energy balances, equilibrium relationships, 

physical property calculations, and engineering design relationships that describe the 

physical phenomena of the system. 

Inequalities usually consist of operational regimes, quality specifications, the feasibility of 

mass and heat transfer, equipment performance, and limits of availability and demand. 

Logical conditions provide the link between continuous and integer variables. 

  

2.2 Optimization problems and definitions:  

 
An optimization problem is a mathematical model, which contains, in addition to the 

previously described elements, one or multiple performance criteria. The performance criterion 

is called the objective function, which can be cost minimization, profit maximization, process 

efficiency, etc. If the problem has multiple selection criteria, the problem is classified as a multi-

objective optimization (FLOUDAS, C. a, 1995). 
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 Generally, an optimization problem can be associated with three essential categories: 

(1) One or multiple objective functions to be optimized. 

(2) Equality constraints (equations). 

(3) Inequality constraints. 

Categories (2) and (3) constitute the model of the process or equipment and category (1) is 

commonly called the economic model. 

A feasible solution to an optimization problem is defined as a set of variables that meet the 

categories (2) and (3) with a desired degree of accuracy. An optimal solution is a set of variables 

satisfying the components of categories (2) and (3), as well as providing an optimal value for 

the function of category (1). In most cases, the optimal solution is one, in others, there are 

multiple solutions (EDGAR; HIMMELBLAU; LASDON, 2001). 

2.3 Mixed Integer Optimization: 

 
There are many problems regarding the design, operation, location, and established 

programming for the operation of process units, involve continuous and integer variables. 

Decision variables for which levels are a dichotomy (whether to install equipment, for 

example), are termed "0-1" or binary variables. In some cases, that integer variables are treated 

as continuous variables, without affecting significantly the value of the objective function 

(EDGAR; HIMMELBLAU; LASDON, 2001). In other words, are solve with the continuous 

variable and after the solution is obtained the objective function is recalculated. 

The structure of a Mixed Integer Programming (MIP) problem, is presented as follows: 

,min                ( , )

subject  to:       ( , ) 0

                         ( , ) 0

                               

                                 integer

x y

n

f x y

h x y

g x y

x X

y Y





  



 

Where x, is a vector of n continue variables, y is an integer variables vector,  h(x,y) = 0, 

represents m equality constraints, g(x,y) ≤ 0, p inequality constraints and f(x,y) the objective 

function.  

 A problem involving only integer variables is classified as an integer programming (IP) 

problem. The case of an optimization problem where the objective function and all constraints 

are linear, containing continuous and integer variables is classified as mixed integer linear 
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programming (MILP) and finally, problems involving discrete variables in which some of the 

functions are nonlinear are classified as mixed integer nonlinear programming (MINLP). 

2.4 Process synthesis: 

 
The main objective of process synthesis is to obtain systematically process diagrams for 

the transformation of available raw materials into desired products, that satisfy the following 

performance criteria: maximum profit and minimum cost, energy efficiency and good 

operability (FLOUDAS, C. a, 1995). 

To determine optimal process diagrams according to the previous performance criteria 

imposed, the following questions need to be answered (FLOUDAS, C. a, 1995): 

 Which process units should be included in the process diagram. 

 How the involved process units should be interconnected. 

 What are the optimum operating conditions and size of the selected process 

units. 

2.5 Global Optimization: 

 
A local optimum, of an optimization problem, is an optimal solution of a set of nearby 

set of solutions, while a global optimum is an optimal solution among all possible solutions. In 

Figure 1 point (X2, Y2), is a local optimum, and point (X1, Y1) is a local and a global optimum. 

 

Figure 1. Global optimum vs, local optimum 
 

Global optimization deals with computation and characterization of global solutions for 

continuous non-convex, mixed integer, algebraic differential, two-level, and non-factorizable 

problems. Given an objective function f that must be minimized and a set of equality and 

inequality constraints S, the main function of global deterministic optimization is to determine 
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(with theoretical guarantees) a global minimum for the objective function f subject to the set of 

constraints S (FLOUDAS, C. A.; GOUNARIS, 2009).  

A function is convex (Figure 2), if the midpoint B of each chord A1A2 lies above the 

corresponding point A0 of the graph of the function or coincides with this point. When solving 

minimization problems of continuous variables with convex viable regions and convex 

objective functions, any local minimum is a global minimum (EDGAR; HIMMELBLAU; 

LASDON, 2001). 

 

Figure 2. Convex function 
 

The models that include non-linear equality constraints, such as those of mass balances 

(bilinear terms - concentration flow product), non-linear physical property relations, nonlinear 

blending equations, non-linear process models, and so, non-convexity that does not guaranty 

that any local minimum is a global minimum. Any problem containing discretely valued 

variables is a nonconvex problem (EDGAR; HIMMELBLAU; LASDON, 2001). 

 

For global optimization, there are two categories of methods, deterministic methods and 

heuristic methods. Deterministic methods, when executed until they reach their termination 

criteria, allows to find a solution close to a global optimum and theoretically demonstrate that 

this optimal value corresponds to a global solution. Heuristic methods can find globally optimal 

solutions, but it is not theoretically possible to prove that the solution is a global solution 

(EDGAR; HIMMELBLAU; LASDON, 2001).  
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2.6 Desalination: 

 

Desalination process is a relatively consolidated technology for removing dissolved ions 

in brackish water, seawater, or industrial effluents. This technique has allowed seawater to be 

used for industrial purposes as well as for human consumption or even for water reuse 

(KUCERA, 2014). 

Desalination is seen as a relatively sustainable and viable technology to attain the need 

of water increasing demand. However, the high energy demand of the processes currently used 

combined to environmental concerns, water scarcity, high energy costs and the potential use of 

renewable energy sources for desalination it has revived research and development in water 

desalination. 

Desalination has a great potential for development on a global scale. This is attributed 

to the fact that of the 71 largest cities in the world that do not have local access to new freshwater 

sources, 42 are located along the coasts, in addition, 2,400 million of the entire world 

population, representing 39% of the total, live at a distance of less than 100 km from the sea 

(GHAFFOUR; MISSIMER; AMY, 2013). 

This shows the use of desalination technology in large proportions, to attain urban and industrial 

freshwater demand. 

 

2.7 Desalination Technologies: 

 
Commercially available desalination technologies can be classified into thermals and 

membranes, reverse osmosis (RO), multi-effect distillation (MED) and multi-stage flash (MSF) 

are the dominant technologies in the market, of which, reverse osmosis being the fastest 

growing application (SHATAT; RIFFAT, 2014). 

The global desalination capacity in 2015 was 100 million m3/day. On a global scale, 68% 

of desalinated water is produced by membrane technologies, 30% by thermal technologies and 

the remaining 2% is produced with other technologies. Desalination water supplies are divided 

into 59% seawater, 22% ground brackish water, and the remainder, surface water, and effluents 

with some degree of salinity (GHAFFOUR et al., 2015). 

The forecast for market growth for the following years is shown in Figure 3 and it is 

expected that by the year 2024 the desalination capacity will be close to 180 million m3/day and 

by the year 2030 will be 280 million m3/day. 
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Figure 3. Desalination market growth forecasts (Desaldata.com) 
Following are some generalities of the technologies that dominate the global market: 

 

2.7.1 Multi-effect Distillation (MED): 

 
Another water desalination technology is by means of the distillation separation process. 

MED occurs in a series of vessels or evaporators called effects, it uses the 

evaporation/condensation principle with a progressive reduction of the operational pressure of 

each of the effects. With this, the feed water can reach different boiling points without providing 

additional energy from the first effect. The feed stream is brought to its boiling point after being 

preheated. Salt water is sprayed onto the surface of pipes to promote its evaporation, these pipes 

have been heated with steam from an external source, usually, a dual-purpose generating plant 

(Figure 4). 

The energy savings of the MED plant are related to the number of effects. The total 

number of effects is limited by the total available temperature range and the minimum allowed 

temperature difference between one effect and the next (KHAWAJI; KUTUBKHANAH; WIE, 

2008).  
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Figure 4. Multi-effect distillation (SHATAT; RIFFAT, 2014) 
 

2.7.2 Multiple Stage Flash (MSF): 

 
In this case, the multistage flash distillation process is based on the flash evaporation 

principle.  

In the MSF process, the saline water is evaporated by reducing the pressure rather than 

raising the temperature. The economy of the MSF technology is achieved by regenerative 

heating where the saline water that is suffering the flash at each stage or camera flash is giving 

some of its heat to the brine stream being fed at this stage.  

The heat of condensation released by water vapor condensing on each step increases 

gradually the temperature of the incoming stream. An MSF plant consists of heat input, heat 

recovery system, waste heat sections (KHAWAJI; KUTUBKHANAH; WIE, 2008). Figure 5 

presents an MSF representation.  

 

Figure 5. Multiple Stage Flash (SHATAT; RIFFAT, 2014) 
Project and design of desalination plants are usually based on a series of environmental 

studies and engineering decisions such as: water source assessment (chemical composition, 

salinity, distance from the source to the plant), concentrate management options, pretreatment 

options, desalination technology selection (MSF, MED, RO, or others), plant capacity, 
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estimation of energy requirements, post-treatment requirements (if necessary), among others 

(VOUTCHKOV, 2012). 

2.7.3 Reverse Osmosis (RO): 

 
Water desalination by RO occurs when the feed solution is subjected to pressure larger 

than the value its osmotic pressure, causing the water ions diffusion through a semipermeable 

membrane, obtaining two streams: permeate (water desalted) and concentrated (a concentrated 

aqueous solution containing salts). The amount of desalinated water obtained will depend on 

the quantity and quality of the feed water, the quantity, and quality of the desired product, as 

well as the technology and types of membranes involved and the operating pressure. 

A reverse osmosis desalination system usually has five components: a water supply 

system, a pre-treatment system, high-pressure pumping, arrangement of membrane modules 

and post-treatment. These components are referenced as reverse osmosis network (RON).  

Prior to the reverse osmosis process, there are the pretreatment steps. Pre-treatment aims 

to remove suspended and colloidal solids to prevent fouling and biofilm growth on the surface 

of the membranes, which decrease the permeate flux. The high-pressure pump needs to provide 

sufficient pressure required to ensure the permeation of water through the membrane. Operating 

pressures depend on the concentration of salts in the water but typically range from 15-25 bar 

to brackish water and from 54-80 bar to seawater (SHATAT; RIFFAT, 2014). 

Membrane modules arrangement consists of a number of pressure vessels in parallel, 

each of which containing a number of membrane modules in series, where the number of 

modules usually are 1 to 8 modules (Figure 10). 

 There are two types of market-leading desalination modules, hollow fiber modules, and 

spiral modules.  Figure 6 shows a RO spiral wound module, which the membrane is used 

between two spacers. One of these serves as a collector channel for the permeate, while the 

other provides space for the feed solution to flow, as well as attempts to increase turbulence, 

decrease the concentration polarization and tendency to fouling. Usually, this type of 

membranes is composed of polyester support, a porous polysulfone intermediate layer and an 

outer thin layer of polyamide. 
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Figure 6. Spiral wound membrane module                                                             
(DOW WATER & PROCESS SOLUTIONS, 2011) 

 
Since this work focuses on the use and modeling of this technology, more detail on the 

salt and water transport in reverse osmosis membranes is following: 

 
 The main transport properties of the processes that use pressure gradient as driving force 

are: permeate flux, rejection of a certain component present in the feed solution and recovery 

(HABERT; BORGES; NOBREGA, 2006). 

 The permeate flux (J) represents the volumetric water flowing through the membrane 

per unit of time and unit of permeation area. The permeate flux is a function of the membrane 

thickness, chemical composition of the feed, porosity, operating time and pressure across the 

membrane (SINCERO & SINCERO, 2003). For water desalination, there are two main fluxes, 

water, and salt (solute). 

 The model to describe the permeation mechanism used in this work is the solution-

diffusion model. According to this mechanism, the water flux Jw, is linked to the pressure and 

concentration gradient across the membrane by the following equation: 

( )WJ A p                                                            (1) 

 Where P is the pressure difference across the membrane,   is the osmotic pressure 

differential across the membrane and (A) is a constant (pure water permeability). 

 From this equation could see that when low pressure is applied ( P    ) water flows 

from the dilute to the concentrated salt-solution side of the membrane by normal osmosis; when 

P     there is no flow, and when P    , water flows from the concentrate site to the 

diluted side (desalination occurs). 

 The salt flux Js, is described by the equation: 

( )S F PJ B C C                                                         (2) 
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where (B) is the salt permeability constant and FC  and PC , respectively, are the salt 

concentrations on the feed and permeate sides of the membrane. 

 From equations 1 and 2 could be observed that the water flux depends on the pressure, 

but the salt flux is independent of the operating pressure since it is diffusive. 

 Recovery is a measure of the membrane selectivity and usually it's calculated as a 

percentual relation between the produced permeate and the feed stream.  

 Temperature also affects both water and salt fluxes, since it affects the osmotic pressures 

calculations and the values of the parameters (A) and (B) usually given by the membrane 

fabricant and obtained in the laboratory. 

 So, the main operating parameters on membrane water and salt rejection are feed 

pressure, salt concentration of feed solution and temperature. In this work, the effect of the 

temperature is not considered (all problems solved at 25°C - standard conditions for the 

parameters (A) and (B) given by the membrane fabricant), the feed salt concentration becomes 

in an input parameter for a given problem living the pressure as the optimization variable. 

 In case of the RON arrangement where multiple membrane modules are used, the total 

number of modules and its configuration is also an optimization variable since it is related to 

the total membrane used and so to the total amount of fresh water produced.   

In this work, for the transport phenomena model of the RO modules, the effect of the 

polarization of the concentration is also considered, a phenomenon that occurs when a solution 

permeates through a membrane selective to the solute, occurring an increase of solute 

concentration in the membrane/solution interface, causing an increase in the osmotic pressure 

of the solution near the membrane (CF of the equation 2), and decrease in driving force for the 

separation and thus reducing the permeate flow (HABERT; BORGES; NOBREGA, 2006). 
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Figure 7. Concentration polarization – salt concentration gradients adjacent to the membrane 
(adapted from BAKER, 2004) 

 

In Figure 7 are presented the salt concentration gradients adjacent to the membrane, for 

steady state, and so, the net salt flux at any point within the boundary layer must be equal to the 

permeate salt flux. This flux is the result of the convective salt flux towards the membrane 

minus the contra-diffusive salt flux from the membrane wall to the bulk solution. This means 

that the salt flux depends on the salt gradient concentration between the membrane wall salt 

concentration and the permeate salt concentration. 

This effect modifies equation 2, to include the contra-diffusive flux and to consider the 

decrease of the driving force. It is presented in detail in the mathematical model in section 4.2.3.    

2.7.4 Pressure Retarded Osmosis (RO): 

 
Although pressure retarded osmosis is not especially a desalination technology, because 

it is more focused on taking the osmotic potentially of two different salinity streams to produce 

energy, it could be used in conjunction with reverse osmosis to propose a hybrid desalination 

process where the PRO serves to the RON as an energy recovery system (ERS), and also to 

deal with the brine disposal. 

PRO is a membrane-based technology which uses a semipermeable membrane that 

separates two streams of different salinity (a low salinity solution and a high salinity pre-

pressurized solution), allowing the low salinity solution to pass to the high salinity solution 
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side. The additional volume increases the pressure on this side, which can be depressurized by 

a hydro-turbine to produce power (HELFER; LEMCKERT; ANISSIMOV, 2014). Since PRO 

uses two streams with different osmotic potential to produce electrical power it can be aid to a 

RO network by using the brine reject of the RO as the high salinity stream, in case of the low 

salinity stream different authors has proposed the use of river water (NAGHILOO et al., 2015), 

wastewater retentate (WAN; CHUNG, 2015), treated sewage (SAITO et al., 2012) and so. With 

the aim of fully integrate RO and PRO technologies in this work pre-treated seawater as the 

low salinity stream was used.   

As for RO and other membrane-based technology, the phenomena are described by 

determination of both salt and water fluxes, being the main operating variables the operating 

feed pressure, the feed solution (low salinity stream) flow and salt concentration, the draw 

solution (high salinity stream) flow and salt concentration, and temperature. In this work, as for 

RO optimization, the effect of temperature is not considered. 

 Membrane parameters used for modeling are also pure water permeability (A) and solute 

permeability (B), and an additional parameter usually referred as solute resistivity for diffusion 

within the porous support layer (K) that group all the structural membrane parameters as 

thickness, tortuosity, and porosity of the support layer. 

As for RO, another phenomenon which reduces the effective osmotic pressure difference 

across the membrane is the concentration polarization. As a result of water crossing the 

membrane, the solute is concentrated on the feed side of the membrane surface and diluted on 

the permeate side of the membrane surface (PRANTE et al., 2014). 
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Figure 8. Osmotic driving force profiles for PRO. Internal and external polarization. (Adapted 
from (HELFER; LEMCKERT; ANISSIMOV, 2014) 

 

Usually for PRO asymmetric membranes are used (a thin dense selective layer over a 

porous support layer), where the draw solution (high salinity) faces the selective layer and the 

feed solution (low salinity) faces the porous layer. As presented in Figure 8, two concentration 

polarization occurs, one externally on the selective layer side, that has a dilutive nature resulting 

from the solute been diluted on the draw solution side. Second concentration polarization occurs 

internally, and it has a concentrative nature resulting from the solute been concentrated inside 

the support layer of the membrane  (ALTAEE; SHARIF, 2014). Both effects of internal and 

external concentration polarization are considered in the model presented and used in further 

sessions. 

In PRO the power generated by unit membrane area is equal to the product of water flux 

and the pressure difference across the membrane: 

   ( )WW pJ A p p                                                              (3) 

By differentiating Eq. (3) with respect to p , it can be shown that W reaches a maximum when 

2
p


  , being this condition the optimal pressure difference that maximizes the power 

generated (ACHILLI; CATH; CHILDRESS, 2009). This condition was used in this work to 

determinate the optimal operating feed pressure. The complete model is presented in section 

4.3.1. 
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2.8 Challenges and advances in desalination: 

 
The main challenges and recent advances in desalination are directly or indirectly related 

to the high energy cost of desalination. To meet desalination energy needs, researchers focused 

on cogeneration, the use of renewable energy sources, and optimization of design and operation. 

For desalination, power consumption is a key concern since energy costs constitute a major 

portion of the operating costs. (GHOBEITY; MITSOS, 2014).  

 Desalination plants have traditionally been designed by manufacturers using empirical 

and heuristic approaches (KUCERA, 2014). Membrane Manufacturers, for example, provide 

engineering simulation tools, like Osmose Reverse System Analyzer (ROSA) by Dow 

Chemicals, Rodesing and Rodata by Hydranautics, Ropro and Costpro by Koch Fluid systems, 

Winflows by osmonics and Wincarol and 2pflows by Toray, all for the evaluation of various 

types of membrane under several potential RO networks (RON). However, these tools have 

limited capabilities, and allow only typical designs and limited operating conditions, for 

example, constant operation. 

The focus of advances has historically been the reduction of the specific capital cost of 

desalination through technological advances, for example, improvements in membranes and the 

development of low-cost heat exchangers for thermal desalination. However, advances in 

computer simulation and mathematical programming have opened new avenues for improving 

desalination technologies. Specifically, the development of new projects for desalination 

systems through experimentation is not practical because of the high costs of the technologies 

involved. The simulation of the design and, more specifically, the synthesis processes through 

systematic optimization are, however, relatively cheap, considering the advances in 

computational tools and numerical techniques.  

 In addition, optimization allows to explore various design configurations, for example, 

process conditions and connectivity of equipment that may initially appear as unpromising, but 

have not been evaluated or tested either experimentally or by simulation  (GHOBEITY; 

MITSOS, 2014). 

Computational advances and optimization-based models for solving complex problems, 

has provided opportunities to assess the performance of new systems, considering large 

numbers of design variables and minimum parameters for optimization problems. Specifically, 

nonlinear programming (NLP) has provided the opportunity to evaluate and develop new and 

innovative projects as well as operational strategies (DAHDAH; MITSOS, 2014). 
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2.9 Reverse osmosis networks design and some hybrid systems: 

 

Following is a review of the state of the art and the main work developed, involving 

representation of desalination systems through superstructures, as well as the works involving 

hybrid systems of thermal technologies, membranes or mixture of both. 

Evangelista (1985) presented a graphical method for the design of reverse osmosis 

plants, analogous to the stage calculations for unit operations, a turbulent regime, the 

polarization of concentration neglected, and constant mass transfer coefficient were considered.  

 El-Halwagi et al. (1992) were the first to employ the superstructure representation for a 

reverse osmosis network and developed a systematic procedure to solve the problem by 

minimizing the discharge stream. 

 Voros et al. (1996) employed the methodology presented by Halwagi (1992), modified 

for seawater desalination applications, the problem was formulated as an NLP, different 

structures were analyzed, and some optimum configurations were identified. 

 El - Halwagi et al. (1997) presented an iterative procedure to solve the problem of design 

and operation of a reverse osmosis network under different feeding conditions and maintenance 

routines. The problem was formulated as a MINLP, using the superstructure representation and 

using the Total Annualized Cost (TAC) as an objective function, the MINLP was solved using 

the LINGO software. 

 Maskan et al. (2000) formulated a multivariable nonlinear optimization problem for 

different configurations of the reverse osmosis network and different operating conditions. The 

objective function was the annual profit, and different two stages RO configurations were 

optimized. 

 Marcovecchio et al. (2005) presented a global optimization algorithm to find the 

optimum design and operating conditions of reverse osmosis networks for seawater desalination 

using hollow fiber modules and considering the polarization of the concentration. The proposed 

algorithm is deterministic and reaches finite convergence to the global optimum. The procedure 

is iterative and uses a bound contraction technique to accelerate convergence. The problem was 

solved using the CONOPT solver of the General Algebraic Modeling System (GAMS). They 

continued this work with a resolution of an MSF/RO hybrid system, proposed as an NLP 

problem and solved again with CONOPT/GAMS. However, due to the high non-convexity of 

the problem the global optimum could not be guaranteed (MARCOVECCHIO et al., 2005).  
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 Vince et al. (2008) resolved a proposed RON as a MINLP problem, with multiple 

objective functions (economic, technological and environmental performance indicators) using 

an evolutionary algorithm as a solution method. In some cases, the authors found multiple 

solutions. 

An extensive review of engineering approaches to the design of reverse osmosis plants 

for seawater desalination has been presented by KIM et al. (2009).  The authors identified the 

factors that influence the total cost of the RO plant, considering feed, pre-treatment, process 

configuration, and post-treatment, specifically to the process configuration highlighted the 

following: type of modules used, the number and capacity of stages, the number of pressure 

vessels for each stage, mixture of different qualities of permeate and possibility of concentrate 

recycling. 

Optimization tools have also been applied for thermal desalination systems. Kamali e 

Mohebinia (2008) used parametric optimization methods to increase the energy efficiency of 

MED-TVC (multi-effect distillation with vapor compression), Shakib et al. (2012) e Ansari et 

al.(2010) used genetic algorithms to improve the performance of a system MED-TVC coupled 

with a generation turbine and a nuclear power plant respectively. 

 Abdulrahim e Alasfour (2010) performed a multi-objective optimization study for a 

Multi-Stage Flash with concentrate recirculation (MSF-BR) and for a hybrid MSF/RO system, 

using a genetic algorithm as a solution strategy. The results showed that the optimization with 

multiple objectives tends to improve the performance of both systems. 

 Du et al. (2012) used a superstructure representation and formulated the optimization of 

a RON as a MINLP problem. It was solved using the GAMS software and the outer 

approximation algorithm, which consists of a series of iterations between NLP type 

subproblems and a MILP type master problem. The GAMS/CPLEX and GAMS/MINOS 

solvers were used to solve the MILP and NLP problems respectively. The global optimum 

condition could not be guaranteed according to the methods used, since changes in the initial 

values provided, produce different objective function results.   

 Park et al. (2012) used a Monte Carlo method to optimize forward osmosis and reverse 

osmosis (FO/RO) hybrid systems, to identify the parameters that affect the energy efficiency of 

the system. The authors found that the concentration polarization effect was the main 

influencing factor and decreasing it was essential to maximize energy efficiency. 

 Sassi e Mujtaba (2012) formulated a MINLP optimization problem for a RON to 

investigate the effects of temperature and concentration variations for the feed stream on the 
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optimum final structure. The objective of the optimization was to obtain the minimum total cost 

of the plant, and the solution method was the outer approximation method using the gPROMS 

software. The results revealed that the temperature and feed concentration have a significant 

impact on the resulting structure and operating conditions. 

Skiborowski et al.  (2012) used a superstructure representation for a multi-effect 

distillation/reverse osmose hybrid system (MED-RO). The problem is formulated as a MINLP, 

a generalized superstructure for the hybrid desalination plant is constructed and conceptual 

design considerations are used to reduce its complexity. The solvers GAMS/SBB and GAMS 

/SNOPT were used. They found that the hybrid system was not the best option than the 

individual MED or RO. The authors also solved a two-stage RON with commercial tool 

BARON to compute the global optimal. After a predefined user maximum time of 250 hours, 

it could not attain convergence, identifying the high structural complexity and non-linearity of 

the problem. 

Alnouri e Linke (2012) used Microsoft Excel (LINDO) to get the optimal configuration 

of a RON considering generalized types of superstructures, in search of global optimal. The 

authors applied the approximation proposed to examples developed by other authors, the results 

were numerically close, but the computation times decreased considerably, however, the used 

structures end up being restricted. 

 Lu et al. (2013) used a simplified superstructure of RON, and formulated the problem 

as a MINLP, using as an objective function the Total Annual Cost (TAC).  

The MINLP was solved using the GAMS software, and a previous simulation based on 

heuristics considerations were made to obtain initial conditions of the variables for the MINLP 

resolution. The type of membrane model used was an optimized variable. 

 Sassi e Mujtaba (2013) developed a MINLP model to evaluate boron rejection in an RO 

process, with the objective of analyzing and optimizing the design and operation of a RON, 

maintaining the desired levels of Boron in the desalinated water. The effects of seasonal 

variation of temperature and pH for seawater feed stream on boron removal were considered. 

The solution method was the outer approximation algorithm within software gPROMS. Results 

suggest that pH and temperature are determining factors for achieving the desired boron 

rejection. 

Druetta et al. (2013) used structural optimization for thermal Multiple Effect 

Evaporation (MEE). The authors used flow patterns as optimization variables and using 

CONOPT / GAMS as a solution tool were able to reduce the specific area of heat exchange. 
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 Saif et al. (2014) proposed a different operation of RON pressure vessels, considering 

the partial removal of permeate at different stages of membrane modules along the pressure 

vessel. Split partial second pass reverse osmoses (SPSPRO) is the concept and was formulated 

as a MINLP. The solver DICOPT/GAMS was used. Since the answer is a local optimum, it 

depends on the initial values provided. Although several starting points were used to solve the 

case studies the global solution could not be guaranteed. 

Zak e Mitsos  (2014) have used large-scale numerical simulation to evaluate several 

concepts of nontraditional hybrid thermal systems that mix the merits of MSF, MED, and MED-

TVC, finding for certain operating conditions, thermal hybrids that present higher energy 

performance and required less area for heat exchange, compared to individual thermal systems, 

in addition to these results, the authors emphasize the need for more detailed models and more 

rigorous optimizations for future works that seek to propose new technological configurations. 

Dahdah e Mitsos (2014) have used structural optimization to optimize the design of 

hybrid thermal systems, specifically to combine desalination systems with vapor compression 

systems, thus being able to propose new desalination technologies involving MSF, MED with 

TVC. The hybrid configurations reported higher performance (relation between the amount of 

distilled water obtained and energy supplied) and a smaller area of heat exchange compared to 

conventional configurations. 

 Jiang et al. (2014) proposed a process model for a RON based on solution-diffusion 

theory and mass transfer. The model is expressed in differential and algebraic equations with 

some equality and inequality constraints. The model was transformed by orthogonal collocation 

in an NLP model that was solved using the solver IPOPT/GAMS, the authors obtained profiles 

of the pressure and feed concentration, in these profiles an optimum value was identified in the 

energy consumption/desalinated water production curve, showing the potential of the 

optimization in the design of RON systems. 

 Wang et al. (2014) optimized the operation of a large reverse osmosis desalination plant 

(100.000 m3/day), using an evolutionary differential algorithm. The scheduling operation 

problem was formulated as a MINLP, with the purpose to decrease the total cost of operation 

when the conditions for which the plant was designed changes over the years. For this case, 

when comparing the typical manual operation of the plant with the new operating routines 

suggested by the optimization method, the operating cost decreased by 5%. 

 Alamansoori e Saif (2014) formulated a MINLP problem for the optimization of a 

hybrid superstructure of Reverse Osmosis and Pressure Retarded Osmosis (RO/PRO) for the 
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simultaneous production of desalted water and electric energy. The MINLP problem was solved 

with the solver SBB/GAMS, being initialized with random starting points, the optimal values 

found are local optimum. The results show that the RO operation can be a viable source of the 

salinity gradient required by PRO for the generation of electric energy, 

 Malik et al. (2015) have used Aspen Custom Modeler (ACM) software for the modeling 

and simulation of an MSF/RO hybrid superstructure, to study and optimize various process 

configurations. The process conditions such as temperatures and pressures and the design 

variables such as MSF number of stages and the number of RON membrane modules were the 

optimization variables to minimize the objective function (energy cost per kilogram fed). The 

results suggest that the hybrid system is recommended for areas where high product quality is 

required. 

 Jiang et al. (2015) formulated a nonlinear optimization problem as a differential 

algebraic optimization problems (DAOPs), to reduce the operating costs of a full-scale RO plant 

for variations in operating conditions. The DAOPs problem was discretized to be transformed 

into an NLP problem that was resolved with the IPOPT/GAMS solver. The variables considered 

were feed temperature, seawater salinity, electricity cost, and desalinated water demand. The 

results showed that up to 26% cost savings can be achieved, compared to the conventional 

process. 

 Lee et al. (2015) proposed a Multi-stage vacuum membrane distillation (MVMD) and 

PRO hybrid system for the continuous production of desalinated water and electricity. The 

system is proposed and the equations that define the system are established by means of a 

numerical study, however, no optimization method was applied, resulting in a possibility of 

future study subject to optimization. 

 Du et al. (2015) present an optimization study of an SPSPRO structure, with the purpose 

of obtaining better qualities and permeate flows in the pressure vessel. The problem is proposed 

as a MINLP and solved with the DICOPT/GAMS solver. It was observed that the strategy does 

not guarantee the global optimum and the results depend strongly on the initial values provided. 

However, the authors report that the SPSPRO configuration could provide a lower cost, lower 

power consumption, and a smaller system size than the conventional process. 

 Wan e Chung (2016) have modeled a PRO / RO hybrid system with the option of closed-

cycle operation, trying to reduce seawater pretreatment costs. The authors report that the 

specific energy consumption of a RO plant can be reduced by including PRO in the energy 

recovery system. In addition, they identified the need to determine the optimum operating 
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pressure of the PRO that maximizes the energy utilization and minimizes the power 

consumption of the PRO / RO hybrid system. 

 As previously mentioned this work aims to provide initial data systematically to reduce 

the computing time of a RON MINLP, since most of the aforementioned works, in some cases 

not give detail of how the preprocessing was done and how the initial data are obtained. The 

proposed methodology in this work is based in the use of surrogated models that replace the 

rigorous equations in a genetic algorithm that is used to provide the initial data used to solve 

the rigorous MINLP. 
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3 OBJECTIVES 

3.1 General Objective: 

The general objective of this work is to develop a mathematical model and optimization 

for the rigorous design of reverse osmosis networks and develop technological criteria, with no 

introduction of initial values by the user. This procedure is based on the hypothesis considering 

the possibility to achieve the optimal rigorous solution for the design of reverse osmosis 

networks with no initial values previously known. 

3.2 Specific objectives: 

 Construct a mathematical model for the design of reverse osmosis networks and 

formulate an optimization problem using the total annualized cost as the 

objective function and including the most relevant operational variables. 

 Using a new deterministic optimization methodology to solve the optimization 

problem and obtain global solutions. 

 Propose a new combined stochastic – deterministic optimization methodology 

to solve the optimization problem. 

 Using the stochastic – deterministic methodology to explore the effect of the 

feed flow, seawater concentration, number of reverse osmosis stages, and the 

maximum number of membrane modules in each pressure vessel on the total 

annualized cost of the plant. 

 Propose a reverse osmosis – pressure retarded osmosis hybrid superstructure 

where the PRO acts as an energy recovery unit and optimize it using the 

stochastic – deterministic methodology proposed. 
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4 METHODOLOGY 

 
The problem of synthesizing a reverse osmosis network (RON) consist in propose a cost-

effective network, including the optimum values for the number of reverse osmosis stages to 

be used, the number of pressure vessels per stage, the number of modules per pressure vessel, 

the number and type of auxiliary equipment, as well as the operational variables for all the 

devices of the network, so the RON structure is formulated as a MINLP with the total 

annualized cost TAC is used as an objective function. 

To solve the problem of get optimal rigorous solutions for the design of RON, two 

methodologies are used, the first is based on a new deterministic bound contraction strategy not 

previously used for this kind of problems, and the second is a mixed stochastic – deterministic 

strategy that also use surrogated models to reduce the mathematical complexity and aims to 

reduce the computational effort. 

Following are presented: the complete mathematical model, the metamodel construction, 

and both strategies solutions proposed. 

4.1 Reverse osmosis network – superstructure representation: 

 
 Figure 9 presents a superstructure of two stages reverse osmosis network involving a set 

of parallel pressure vessels per reverse osmosis stage, high-pressure pumps and turbines. These 

are the units that are going to be considered in the superstructure representation. The feed flow 

enters a high-pressure pump and is sent to the first RO stage where it is separated into two 

streams: permeate and brine. The brine leaving the first RO stage feeds the second RO stage, 

but a fraction could be recycled. Recycling increases the velocity through the membrane module 

and thus reduces the concentration polarization. The final brine from the second stage goes to 

a turbine to recover the residual energy. The permeates from stages 1 and 2 are mixed to get the 

final permeate. 

All the possible connections between the existing units are obtained by taking into 

account the following considerations: 

• The feed stream (Fs) enters at atmospheric pressure, so it can’t be connected directly to 

the RO stages. 

• Blending the brine final stream (FB) is not necessary because there is no restriction of 

concentration discharge of the concentrated stream. 

• The pressurization of product streams (FP and FB) is unnecessary. 
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• The permeate streams do not be blended with any brine streams. 

• A pressurized stream does not be immediately depressurized. 

• The heat transfer is not considered, so the feed temperature is just considered for the 

osmotic pressure calculations. 

 

Figure 9. Superstructure of two stages Reverse Osmosis configuration 
 

4.2 Reverse osmosis network – MINLP model: 

 
The superstructure presented in Figure 9 is a simplified structure that represents the 

typical commercial set of a reverse osmosis plant, a general structure with all the possible 

connections between units could be seen on appendix 1, the model for the actual representation 

is composed by the mass balances, the reverse osmosis stage model, the transport phenomena 

model for each membrane module and the cost functions.  

4.2.1 Mass Balances: 

 
Following are presented the mass balances for a two reverse osmosis stage presented in 

Figure 9. 

 

Global Balances: 

ˆ
S PO BOF F F                                                              (4) 

 ˆ
S S PO PO BO BOF C F C F C                                                        (5) 
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Recycle Balances: 

1 1
IN B

S RF F F                                                               (6) 

1 1 1 1
IN IN B B

S S RF C F C F C                                                         (7) 

2 1 1 2
IN B B B

R RF F F F                                                            (8) 

2 2 1 1 1 1 2 2
IN IN B B B B B B

R RF C F C F C F C                                                 (9) 

Balances for the outlet permeate stream: 

1

ˆ
RON

P

PO m

m

F F


                                                               (10) 

1

ˆ
RON

P P

PO PO m m

m

F C F C


                                                          (11) 

Max

PO PC C                                                                (12) 

Balances for the outlet brine stream: 

1 1

RO T

BO BO

N N
B F T F

BO m t

m t

F F F
 

 

                                                 (13) 

1 1

RO T

BO BO

N N
B F T FB T

BO BO m m t t

m t

F C F C F C
 

 

                                          (14) 

 

4.2.2 Reverse osmosis stages model: 

 
A reverse osmosis stage is formed by a set of parallel pressure vessels, which separates 

equal fractions of the feed stream into permeate and brine streams. Each vessel is formed by a 

single or multiple membrane modules in series (Figure 10). 
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Figure 10. Structure of reverse osmosis (RO) stage and pressure vessel. 
 

In this work spiral wound modules are used because of their high packing density and 

relatively low energy consumption. A diffusion model for spiral wound (SW) modules is 

presented below. 

The feed of the RO stage is distributed equally to the pvN  pressure vessels of each stage: 

in RO

m m mpvF N F                                                   (15) 

 
 It was decided to make this a continuous variable to reduce the computation complexity, 

and the approximate result will be obtained by rounding the variable. Other authors also use the 

same concept, except Du et al. (2012), who used binaries to model the number of pressure 

vessels. In a later results analysis it will be presented the marginal effect of this assumption. 

 
Since the inlet flow in a membrane module has physical constraints given by the 

manufacturer, the number of pressure vessels must respect the following restrictions (maximum 

and minimum permitted inlet flows) 

 
min maxin RO in

m m m m mpv pvF N F F N                                          (16) 
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For the remaining 2,...,e Ne   modules within each pressure vessel, the incoming 

properties are equal to those of the concentrated stream (brine) of the previous module, so the 

properties of the brine final stream are obtained from the last series module. 

 

First module: 

                               ,1 ,1  Be in Pe

m m mF F F                                                        (17)                   

,1 ,1 ,1 ,1  Be Be in RO Pe Pe

m m m m m mF C F C F C                                           (18) 

Rest of the modules: 

, , 1 , , 1        1,  Be Be Pe O

m e m e m e m eF F F F e e Ne                                           (19) 

              , , , 1 , 1 , , , 1 , 1     1,  Be Be Be Be Pe Pe O Be

m e m e m e m e m e m e m e m eF C F C F C F C e e Ne                     (20) 

For the last membrane module, is written  

, , 1 , , 1
O Be Pe O

m Ne m Ne m Ne m NeF F F F                                                    (21) 

, , , 1 , 1 , , , 1 , 1
O Be Be Be Pe Pe O Be

m Ne m Ne m Ne m Ne m Ne m Ne m Ne m NeF C F C F C F C                                 (22) 

 

The final brine stream of the corresponding RO stage is obtained from: 

,
1

Ne
B O

m m m e

e

pvF N F


                                                       (23) 

, ,
1

Ne
B B O Be

m m m m e m e

e

pvF C N F C


                                               (24) 

The flow of the permeate stream is obtained as follows: 
 

,
1

Ne
P Pe

m m m e

e

pvF N F


                                                     (25) 

, ,
1

Ne
P P Pe Pe

m m m m e m e

e

pvF C N F C


                                                (26) 

 
Usually, the modules inside the pressure vessel are all connected in series. However, to 

make the model more general, the splits are added to remove some flowrate ,
O

m eF  from each 

module. While, in general, this is acceptable, these flows that do not exist in industrial units, 

are introduced to determine the number of modules in each vessel.  (Figure 11) 
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Figure 11. By-pass representation of a single pressure vessel. 
 

For these, binary variables ,
O

m ey  are further introduced which are one if a flow       ,
O

m eF

>0, and zero otherwise. Thus, the following equations are introduced:  

, , 0O O

m e m eF y                                                 (27) 

By adding the following equation, only one of the flows to be different from zero is 

forced: 

,
1

1
Ne

O

m e

e

y


                                                  (28) 

In addition, to make sure that , ,
Be O

m e m eF F  when ,
O

m ey =1, is written: 

, , ,( ) (1 ) 0Be O O

m e m e m eF F y                                       (29) 

To obtain the number of modules Ne in a pressure vessel the next expression is used: 

,1 ,2 ,3 ,4 ,5 ,6 ,7 ,81* 2* 3* 4* 5* 6* 7* 8*O O O O O O O O

m m m m m m m mNe y y y y y y y y          (30) 

 

4.2.3 Membrane modules model: 

 
To obtain the permeate flow and concentration of each membrane module a widely used 

and accepted solution-diffusion model is used (ALBASTAKI; ABBAS, 1999) which describes 

the transport phenomena of salt and water through the membrane (Figure 12). It depends on the 

pure water and salt permeabilities, which are parameters provided by the membrane modules 

manufactures (HABERT; BORGES; NOBREGA, 2006).  

Another phenomenon that must be considered in the model is the polarization of the 

concentration since it decreases the permeate flux (BAKER, 2004). To describe this 

phenomenon is widely used the liquid film theory, being necessary to determine the mass 

transfer coefficient calculated as the relationship between the numbers of Sherwood, Reynolds, 

and Schmidt (SCHOCK; MIQUEL, 1987). 
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To determine the pressure drop of each module a correlation provided by the 

manufacturer is used (DOW WATER & PROCESS SOLUTIONS, 2011). 

 

 

Figure 12. Permeate and brine transport through the membrane 
 
 
Diffusion membrane module: 

 
The flux for water ,

W

m eJ   for one membrane module is given by the following equations: 

, ,
ˆW nd

m e RO m eJ A P                                                             (31)  

where ˆ
ROA  is the pure water permeability, with the net driving pressure difference given by: 

,1
,1 ,1 ,1 ,1

ˆ ( )
2

B

mnd RO Pe B P

m m m m m

P
P Pn P  


                                                (32) 

,
, , 1 , , ,

ˆ ( )        1
2

B

m end Be Pe B P

m e m e m e m e m e

P
P P P e 


                                (33) 

, ,
ˆˆB Be

m e m ea TC                                                          (34) 

          , ,
ˆˆP Pe

m e m ea TC                                                           (35) 

where 6ˆ,  2.63 10
.

bar
a

K ppm


  
   

 
. The brine pressure can be calculated as follows: 

,1 ,1  Be RO B

m m mP Pn P                                                      (36) 

  , , 1 ,            1Be Be B

m e m e m eP P P e                                         (37) 

, ,
1

      
Ne

B O Be

m m e m e

e

P y P


                                            (38) 

Where ,
B

m eP is estimated from a SW RO membrane correlation given by the module producer: 

, , ,, ,in in in

m e m e m eF C P

 

, , ,, ,Be Be Be

m e m e m eF C P

, , ,, ,Pe Pe Pe

m e m e m eF C P

, , W nd

m e m eJ P   ,
, , ,

S B wall Pe

m e m e m eJ C C 



49 
 

 

1.7

,
, 9532.4

ˆ

av

m eB

m e

av

F
P



 
    

 
                                         (39) 

,1
,1  

2

in Be

m mav

m

F F
F


                                                  (40) 

, 1 , 1 ,
,          1,

2

Be O Be

m e m e m eav

m e

F F F
F e e Ne

  
                                       (41) 

, 1 , 1 ,
, 2

Be O O

m Ne m Ne m Neav

m Ne

F F F
F

  
                                          (42) 

In turn, the flux solute ,
S

m eJ  is given by:  

 ,
, , ,

ˆS B wall Pe

m e RO m e m eJ B C C                                             (43) 

where ˆ
ROB is the salt permeability. The membrane wall concentration is: 

,

,,
, , , ,( )

w
m e

m e

V

ksB wall Pe Be Pe

m e m e m e m eC C C C e                                      (44) 

Where ,m e

m
ks

s

 
 
 

 is the mass transfer coefficient, and ,
w

m e

m
V

s

 
 
 

 the permeation velocity, which 

are estimated using the following expressions: 

0.75 0.33
, ,

ˆ
ˆ0.04 Re  

ˆm e m e

D
ks Sc

d
                                           (45) 

, ,
, ˆ

W S

m e m ew

m e

P

J J
V




                                                     (46) 

,
ˆRe  ,   ,  m e Sc D  and d̂  are the Reynolds, Schmidt, salt diffusivity, and feed space 

thickness, respectively.  They are given by:  

,
,

ˆ ˆ
Re

ˆ

s

h m e

m e

d U 


                                                     (47) 

ˆˆ
ˆˆ

Sc
D




                                                            (48) 

The hydraulic diameter ˆ
hd of a spiral wound module used to calculate the Reynolds 

number depends on the channel height ˆ
sph , the specific surface area of the spacer ˆ

spS and the 

void fraction ̂  (Figure 6): 
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ˆ4ˆ
2 ˆˆ(1 )
ˆ

h

sp

sp

d

S
h






 
                                                   (49) 

The superficial velocity ,
s

m eU  depends on the average flow rate ,
av

m eF , the density, and the 

feed cross-section open area ˆ
fcS . 

,
, ˆˆ

av

m es

m e

fc

F
U

S
                                                         (50) 

ˆˆ ˆ ˆ
fc L L spS w n h                                                       (51) 

                   

The feed cross-section open area is the product of the membrane leaf width ˆ
Lw , the 

number of leaves ˆ
Ln and the spacer height ˆ

sph . 

 

Finally, the permeate concentration and flow rate are: 

,
,

,

*1000
S

m ePe

m e W

m e

J
C

V
                                                     (52) 

, ,
ˆ ˆPe W

m e m e mem PF V S                                                     (53) 

ˆˆ ˆ ˆ
mem L L LS n l w                                                       (54) 

 

Where ˆ
L

n  is the number of leaves, ˆ
Ll is the effective length and ˆ

L
w the width of the 

module. 

To avoid numerical problems, caused by zero values for non-existing membrane 

modules in a pressure vessel the flux, a binary variable ,
nd

m ey  is introduced in the water flux ,
W

m eJ  

expression as follows:     

, , ,
ˆW nd nd

m e RO m e m eJ A P y                                                      (55)  

The next constraint, guarantees that the binary variable ,
nd

m ey takes a value of zero if a 

flow ,
av

m eF = 0, and one otherwise. 

1

, ' ,
' 1

(1 )
e

O nd

m e m e

e

y y




                                                (56) 
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Indeed, when the flux has been diverted in the previous vessel, the summation will 

become one and ,
nd

m ey  will become zero. Before the flow is diverted, the summation is zero and 

,
nd

m ey will be forced to one.  

Now the following change of variable is introduced: 

, , ,
nd nd nd

m e m e m ew P y                                                    (57) 

So, the water flux expression ,
W

m eJ  turns into: 

, ,
ˆW nd

m e RO m eJ A w                                                        (58) 

With the corresponding set of equations, to deal with the product of a binary and a 

continuous variable, as follows: 

, , 0nd nd nd

m e m ew y                                                    (59) 

, 0nd

m ew                                                            (60) 

, , ,( ) (1 ) 0nd nd nd

m e m e m eP w y                                                 (61) 

, , 0nd nd

m e m eP w                                                        (62) 

 

Now for the membrane wall concentration, because of the mass transfer coefficient

,m e

m
ks

s

 
 
 

, could take zero values when there is no flux through the membrane module, the 

expression is re-written with the following change of variable: 

 

,,
, , , ,( ) m eB wall Pe Be Pe

m e m e m e m eC C C C e
                                      (63) 

Where: 

, , ,
w

m e m e m eks V                                                      (64) 
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4.2.4 Costs and objective function: 

 
The following economic model is based in the one proposed by Malek et al. (1996). 
 

Objective function 

Minimize the Total Annualized Cost (TAC), given by: 

TAC AOC ccf TCC                                                         (65) 

where 
1

1

( 1)

( 1) 1

t

t

ir i
ccf

ir




 
. In turn,                                                                                             

1.25 (1.15 )equipTCC CC                                                   (66) 

The equipment cost is given by: 

equip swip HPP T mem pvCC CC CC CC CC CC                                    (67)                   

The salted water intake and pretreatment system cost: 

0.8996(24( ))swip SW INCC Q                                             (68) 

where SW INQ   is the feed flow rate to the system in m3/h. 

Cost of pump and turbines: 

52 ( )HPP HPP

HPP p p

p

CC P Q                                                (69) 

52 ( )HPPR

HPPR m m

m

RCC P Q                                              (70) 

52 ( )T T

T t t

t

CC P Q                                                   (71) 

where 
HPP

pP , HPP

pQ , HPPR

mP , 
m

RQ  and T

tP , T

tQ  are the pressure drop in bar and flow rate in 

m3/h for the high-pressure pump, recycle pump and turbine respectively. It should be noted that 

this cost of capital is linear with power, a known shortcoming of previous models  because it 

cannot capture the nonlinear behaviors of costs (GUTHRIE, 1969). It will be discussed the 

impact of this assumption in the results section.  

Membrane module cost: 

1

RON

mem m m mem

m

pvCC N Ne c


                                         (72) 

Pressure vessels cost: 

1

RON

pv m

m

pv pvCC N c


                                                  (73) 
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Annual operational costs: 

lab chem memr ins powAOC OC OC OCm OC OC OC                           (74)        

Labor cost 

lab lab P aOC c Q t                                                            (75) 

where the permeate production rate PQ  and the annual operational time at are used. 

Cost of chemicals: 

0.018chem SW IN aOC Q t                                                     (76) 

Cost of replacement and maintenance: 

0.01OCm TCC                                                         (77) 

Membrane replacement cost: 

0.2
memr mem

OC CC                                                        (78) 

Insurance costs: 

0.005
ins

OC TCC                                                       (79) 

Electric energy costs: 

( )pow en SWIP RO aOC C PP PP t                                               (80) 

Energy consumed for intake and pre-treatment system: 

ˆ1
ˆ36

SW IN SWIP
SWIP

SWIP

Q P
PP


 

                                                  (81) 

Electric energy consumed by the reverse osmosis plant: 

1
ˆ

ˆ ˆ36

HPP HPP HPPR
p p T Tm m

RO t t T

p m tHPP HPPR

RP Q P Q
PP P Q 

 

  
     

 
                   (82) 

 

4.3 Hybrid reverse osmosis - pressure retarded osmosis superstructure 

 
Figure 13 presents a reverse osmosis network with two stages, pumps, and turbine where 

the pressure retarded osmosis unit uses the brine stream of the second RO stage after passing 

through the turbine, as draw solution (the one with high osmotic potential) and some pre-treated 

seawater stream as a feed solution (low salinity potential). From now, this arrangement is 

mentioned in this work as RO+PRO configuration 1. 

Figure 14 presents an RO network where the PRO also uses the brine from the second 

stage after pressure conditioning by turbine as draw solution, but this time the pre-treated 
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seawater stream is divided in two, the one serving to the PRO unit as feed solution, and a second 

part that is by-passed through the PRO unit to be recombined with the low salinity side output 

solution, and afterward enters the RO first stage. This arrangement will be referred from now 

as RO+PRO configuration 2. 

In both configurations, the PRO unit consists of a parallel membrane module 

arrangement where both entering flows (draw and feed solutions) are distributed equally to the 

PRO
N  vessels as presented in Figure 15.  

 
Figure 13. Superstructure of RO+PRO (Configuration 1). 

 

 
Figure 14. Superstructure of a RO+PRO (Configuration 2). 

 

 

Figure 15. PRO unit arrangement. 
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4.3.1 RO+PRO mathematical model 

 
Now the equations of the rigorous MINLP RO+PRO model are presented. 

Global Balances: 

ˆ T

S PO DF F F                                                              (83) 

 ,ˆ T D out

S S PO PO DF C F C F C                                                     (84) 

Balances for the outlet permeate stream: 

1

ˆ
RON

P

PO m

m

F F


                                                               (85) 

1

ˆ
RON

P P

PO PO m m

m

F C F C


                                                          (86) 

M a x

P O PC C                                                                (87) 

Pressure retarded osmosis unit model: The feed (high and low salinity flows) of the PRO 

unit are distributed in
PRO

N  parallel membrane modules: 

,D in

D PROF F N                                                          (88) 

,PRO F in

S PROF F N                                                         (89) 

The high salinity flow leaving each membrane module is driven to a turbine to generate 

electrical power: 

,T D out

D PROF F N                                                        (90) 

The low salinity output flow is driven to the final discharge in case of RO+PRO 

configuration 1: 

,dis F out

S PROF F N                                                         (91) 

For the RO+PRO configuration 2, the low salinity output flow is mixed with the 

remaining by-passed seawater flow: 

,F out

F PROF F N                                                         (92) 

PRO RO

S S SF F F                                                         (93) 

1
IN RO

F SF F F                                                           (94) 

,
1 1
IN IN F out RO

F S SF C F C F C                                                (95) 

.    
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The inlet flows of a PRO membrane module are restricted to a specific range by the 

commercial provider:  

, m in , m axD in D D in

P RO P R OF N F F N                                   (96) 

, min , maxF in PRO F in

PRO S PROF N F F N                                         (97) 

The output conditions for the high salinity (draw solution) side: 

, , ˆD out D in PRO PRO

W memF F J S                                                        (98) 

, ,
,

,

ˆD in D in PRO PRO
D out S mem

D out

F C J S
C

F


                                                (99) 

Output conditions for the low salinity (feed solution) side: 

, , ˆF out F in PRO PRO

W memF F J S                                                       (100) 

, ,
,

,

ˆF in F in PRO PRO
F out S mem

F out

F C J S
C

F


                                               (101) 

Where ˆ PRO

memS , is the PRO membrane area, and the PRO water flux PRO

WJ , considering 

internal and external polarization and the solute reverse flux could be obtained from: 

ˆ
exp exp

1ˆ
ˆ ˆ2

1 exp exp

PRO PRO
D FW W

PRO

PRO D

W PRO
PRO PRO

PRO W W

PRO PRO

W

J J K

k
J A P

B J K J

J k

 
 

 

   
     
                        

                   (102) 

where ˆ
P R OA  is the pure water permeability, ˆ

P R OB is the salt permeability and 

PRO m
k

s

 
 
 

 is the mass transfer coefficient that could be estimated as: 

0.57 0.40
ˆ

ˆ0.2 Re
ˆ

PRO

h

D
k Sc

d
                                                (103) 

where ,
ˆRe  ,   ,  m e Sc D  and ˆ

hd  are the Reynolds, Schmidt, salt diffusivity, and hydraulic 

diameter, respectively.  They are given by:  

ˆ ˆ
Re

ˆ

s

h
d U 


                                                    (104) 

ˆˆ
ˆˆ

Sc
D




                                                     (105) 
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The superficial velocity ,
s

m eU  depends on the average flow rate ,
av

m eF , the density, and the feed 

cross-section open area ˆ
fcS . 

ˆˆ

av
s

fc

F
U

S
                                                     (106) 

, ,

 
2

D in D out
av F F

F


                                           (107) 

The parameter K̂  is the solute resistivity for diffusion within the porous support layer 

and is defined by: 

ˆˆ ˆˆ
ˆ ˆˆ

t S
K

D D




                                                   (108) 

Where t̂ , ̂, and ̂, are the thickness, tortuosity, and porosity of the support layer, 

respectively and Ŝ is known as the structural parameter. 

According to Schock (SCHOCK; MIQUEL, 1987), for low Reynolds numbers 

(100<Re<1000) the local solution pressure losses in spiral wound modules can be calculated as 

(where DP  is in pascals): 

0.3 26.23Re ( )
ˆ2

s
D

h

U L
P

d



                                         (109) 

With the osmotic pressure of the draw and feed solution: 

,ˆˆD D ba TC                                                   (110) 

,ˆˆF F ba TC                                                  (111) 

Calculated at bulk concentration conditions: 

, ,
,

2

D out D in
D b C C

C


                                          (112) 

, ,
,

2

F out F in
F b C C

C


                                           (113) 

The reverse salt flux is given by: 

, ,
ˆ

exp exp
ˆ

ˆ ˆ
1 exp exp

PRO PRO
D b F bW W

PRO

PRO

S PRO
PRO PRO

PRO W W

PRO PRO

W

J J K
C C

k
J B

B J K J

J k

 

 

   
     
                       

                      (114) 
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The reverse osmosis stages model is the same as presented in sections 4.2.2 and 4.2.3. 

The objective function and the cost equations for the RO+PRO superstructure are 

essentially the same as presented in section 4.2.4 with the following modifications (all related 

with the additional costs associated with the PRO unit): 

     

The equipment cost is given by: 
 

    equip sw ip H P P H PPR T m em pv Tpro m em pro pvproC C C C C C CC CC C C CC C C CC CC        

(115)                   
 Additional required turbine: 
 

52( )Tpro Tpro

TproCC P Q                                               (116) 

 
Membrane module cost for PRO: 

 
PRON

mempro mempropvproCC N c                                         (117) 

Pressure vessels cost for PRO: 
 

pvpro pvpro pvproC C N c                                          (118) 

 
Annual operational costs: 
 

la b ch em m em r ins p o w m em proA O C O C O C O C m O C O C O C O C                          

(119) 
    

Membrane replacement cost for PRO: 
    

0.2mempro memproOC CC                                                (120) 

 
Electric energy consumed by the RO+PRO plant: 
 

1
ˆ ˆ

ˆ ˆ36

HPP HPP HPPR
p p T T Tpro Tprom m

RO t t T T

p m tHPP HPPR

RP Q P Q
PP P Q P Q 

 

  
      

 
       (121) 
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4.4 MINLP problem statement 

 

The mass balances of mixing and division nodes for the distribution box, the reverse 

osmosis stages model, the transport model for each module, the cost functions, the objective 

function, as well as all possible physical constraints (flow and concentration of permeate, 

maximum pressures and brine concentration allowed) form the proposed MINLP model for the 

optimization of a reverse osmosis network. 

 

Thus, the optimization problem is state as the following considerations: 

Given: 

Feed water concentration, membrane module parameters to be used, permeate flow 

required, maximum salt concentration allowed for discharge stream, and energy costs. 

Optimize:  

Number of membrane modules in each pressure vessel, recycles, and operational 

variables (seawater flowrate, feed pressure for each RO stage, and inlet flow to the first 

membrane module). 

To minimize:  

Total annualized cost for the RO network, subject to process constraints: equality 

constraints such as model equations, and inequality constraints such as the limits of the 

optimization variables.  

 

In case of the hybrid RO+PRO superstructure, the optimization problem statement is 

basically the same, it just includes the additional PRO membrane model equations and its 

respective operational parameters. 
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The data for the for spiral wound (SW) modules with FilmTec™ SW30HR-380 is 

presented in  

Table 1, the membrane parameters for PRO are presented in Table 2, and the economic 

parameters are presented in Table 3.  

 
Table 1. Reverse osmosis module parameters. 

Parameter Value 

Effective area - Smem (m2) 35.33 
Water permeability - A (kg/m2∙s∙bar) 2.4 x 10-4 
Salt permeability - B (kg/m2∙s) 2 x 10-5 
Diffusivity coefficient - D (m2/s)  1.35 x 10-9 
Hydraulic diameter - dh (m)  9.35 x 10-4 
Feed cross-section open area - Sfc (m2) 0.0147 
Maximum inlet flow rate – Fmaxin (kg/s)  5 
Minimum inlet flow rate – Fminin (kg/s) 1 

 
 

Table 2. Pressure retarded osmosis module parameters. 
Parameter Value 

Effective area - Smem (m2) 37.6 
Water permeability - A (kg/m2∙s∙bar) 1.2 x 10-3 
Salt permeability - B (kg/m2∙s) 4.57 x 10-4 
Feed space thickness - d (m) 2.5 x 10-3 
Diffusivity coefficient - D (m2/s)  1.493 x 10-9 
Structural parameter - S (m) 340 x 10-6 
Hydraulic diameter - dh (m)  9.46 x 10-4 
Length of element - L (m) 2.25 

 
 

Table 3. Economic parameters 
Parameter Value 

Capital charge factor – ccf 0.088 
Membrane unitary cost - Cmem (USD) 750 
Pressure vessel unitary cost - Cpvm (USD) 1,000 
Labor cost factor – Clab (USD)  0.05 
Annual operational time - ta (h/y) 8,000 
Pressure difference for intake - ∆Pswip (bar) 5 
Energy price - Cen ($/kwh) 0.05 
Intake pump efficiency - ᶯswip  0.75 
High pressure pump efficiency - ᶯswip  0.75 
Turbine efficiency - ᶯswip 0.75 
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4.5 Bound contraction methodology 

 
The new bound contraction methodology for MINLP problems proposed by Faria; 

Bagajewicz, (2012), is going to be implemented for the RON rigorous design, it consists in 

using a MILP model as lower bound, which corresponds to a relaxed solution (linearized 

solution) of the original MINLP problem, constructed from the discretization or partitioning of 

some chosen variables. 

  Selected variables to be discretized are those that appear involved in a greater number 

of nonlinearities. 

Once the variables are discretized in a fixed number of intervals, the bound contraction 

procedure is done using an interval elimination strategy. 

 The partition methodology generates linear models that guarantee to be local optima 

(lower bounds) of the problem. 

To apply the bound contraction procedure, it is necessary to establish an upper bound to 

compare with the lower bound obtained from the MILP. The upper bound can be obtained using 

the original MINLP model initialized with the results of the linearized MILP model, which in 

many cases generates feasible solutions for the original MINLP problem, thus obtaining an 

upper bound for comparison. 

Optimization strategy is presented as follows (FARIA; BAGAJEWICZ, 2012): 

1. Construct a linearized model that corresponds to a lower bound for the problem. 

This model is obtained by partitioning some of the variables involved in bi-

linearities (i.e., the product between concentrations and flows) and other possible 

non-linearities of the model. 

2. Fixing the number of intervals for the partitioned variables. 

3. Run the linear MILP model without forbidden any interval, identifying the interval 

where is located the answer for each of the discretized variables.  

4. Use the results of the MILP model as initial values for the original MINLP model to 

get an upper bound. 

5. If the difference between the objective values of the upper and lower bounds is lower 

than a tolerance ε, a global optimum was found, else continue to 6. 

6. Run the linear MILP, this time excluding the interval containing the answer for the 

first partitioned variable.  
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7. If an infeasible solution, or feasible with an objective value greater than the actual 

upper bound are obtained, all the intervals that were not excluded are eliminated, 

and the surviving feasible interval is partitioned again. 

8. Repeat steps 6 and 7 for the rest of the partitioned variables, one at the time. 

9. Return to step number 3, a new iteration starts with the new contracted bounds. 

Iterations are made until attaining convergence or until the bounds cannot be contracted 

anymore, in that case, there are two possibilities:  

 Increase the number of intervals to a level at which the size of the intervals is small 

enough to generate a lower bound with an acceptable tolerance to the upper bound. 

 Divide the problem into two or more subproblems using a strategy similar to the branch 

and bound procedures. 

Figure 16 presents the bound contraction methodology summarized. 

 

 

Figure 16. Bound contraction – interval elimination strategy. 
 

4.6 Stochastic – deterministic methodology 

 
A genetic algorithm is used to provide good initial values for the rigorous MINLP model, 

to compute optimal solutions. Two different solutions are tested, first the genetic algorithm 

using the rigorous equations is solved followed by the rigorous MINLP, and second, the use of 

rigorous equations of the model in the genetic algorithm is replaced by a metamodel and the 

solution is again used as initial values for the rigorous MINLP.  
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4.6.1 Reverse osmosis metamodel construction: 

 
Simple quadratic polynomials are used as metamodels: The equations of the membrane 

diffusion model were solved numerically for different inlet conditions (values selected 

according to the bounds of the problem) to obtain a mesh of input-output data pairs. Two 

different regions were identified for the permeate concentration: A Linear Region and a Non-

Linear Region, the expressions are presented next. 

Linear Region: The concentration was adjusted to first order polynomial as follows: 

1 2 3 4
Pe IN IN INC K K P K C K F                                  (122) 

Non-Linear Region: Permeate concentration was adjusted according to the mathematical 

expression presented below: 

     
           

     

2 2 2

1 2 3 4 5 6

2 2 2 2 2 2

7 , 8 9 10

2 2 2

11 12 13 14

15

Pe IN IN IN IN IN

in IN IN IN IN IN IN

m e

IN IN IN IN IN IN IN IN IN

IN IN IN

C K K P K C K F K P K C

K F K P C K P F K C F

K P C F K P C K P F K C F

K P C F

     

   

   



        (123) 

The permeate flow was adjusted to a first-order polynomial for all the operation region: 

1 2 3 4 5

6 7 8

Pe IN IN IN IN IN

IN IN IN IN IN IN IN

F K K P K C K F K P C

K P F K C F K P C F

    

  
                (124) 

To obtain the coefficients of the metamodel a Diploid Genetic Algorithm (DGA) 

programmed in MATLAB® (THE MATHWORKS INC., 2016) was used. The Simulations 

were developed in a laptop with processor Intel(R) Core (TM) i7 – 3610QM CPU @ 2.3GHz 

(8 CPUs) with 8192MB of RAM. Each variable ( PeC , PeF ), was evaluated using the equations 

(122-124) for different inlet conditions                                             ( INP , INC and INF ) using 

estimated coefficients, to generate the metamodel solutions mesh. The same inlet conditions 

were used with equations (31-54) to generate the rigorous solutions mesh. The fitness function 

that was minimized to obtain the coefficients is the following:  

 2N
Rig Met

i

Fobj V V                                               (125) 
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where V is the variable to be adjusted ( PeC , PeF  ), N is the total number of points and 

the superscripts Rig. and Met. represent the value obtained from the rigorous method and the 

metamodel prediction, respectively.  

4.6.2 Pressure retarded osmosis metamodel construction: 

 
 The approach to obtain the PRO metamodel is the same presented in the previous 

section, the adjusted variables were, the water and solute fluxes ( PRO

WJ , PRO

SJ ). 

 The expressions are presented as following: 

 

, , ,
1 2 3 4

PRO D in F in F in

WJ K K F K F K C                            (126) 

, , ,
1 2 3 4

PRO D in F in F in

SJ K K F K F K C                            (127) 

This time the equations (92-114) are used to obtain the rigorous mesh, and equations 

(126-127) with estimated coefficients are used to generate the metamodel solution mesh, once 

again equation (125) was used to fitting the coefficients minimizing the square difference 

between rigorous and metamodel mesh. 

4.6.3 Genetic Algorithm: 

 

The diploid genetic algorithm code used for both strategies (using rigorous equations and 

the metamodels equations as well) was the same used to obtain the metamodel coefficients and 

it follows the description given by Fonteix et al., (1995). The method tends to imitate principles 

of organic evolution processes as rules for an optimization procedure, this is based in generic 

concepts such as population, recombination, and mutation as evolution rules to guide the 

optimum search.  

The parameters used were 1000 individuals, 10 generations, 100 survivors and 100 

mutants, for both strategies. 

 The GA has 4 random variables per stage: Flow entering each pressure vessel, pressure 

entering all pressure vessels, the number of modules in each stage and the recycling ratio. Once 

these are fixed for each individual of the population (1000), the respective model is solved by 

calculating first the sequence of membrane models using the transport phenomena equations or 

the metamodel expressions according to the case, then the recycle is calculated and the stage is 

recalculated based on the new inlet conditions of flow and concentration until convergence. The 

rest is the classical set up of a diploid GA algorithm. The rigorous model and the linear and 
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non-linear metamodels depending on the regions where they are the most accurate were 

considered. Indeed, the linear model was used when the ratio between inlet concentration and 

inlet pressure is lower than 950 and the nonlinear model when this ratio is equal or greater than 

950, this boundary ratio was obtained from the model adjustment for different inlet flows. 

 

The classical set up of the genetic algorithm used is presented in Figure 17. 

 

Figure 17. Genetic algorithm set up 
 

4.6.4 Stochastic – deterministic methodology (flowchart): 

 
A new solution methodology is proposed: a rigorous MINLP composed of the mass 

balances (Eqs. 4-14), the reverse stages model (Eqs. 15-30), the membrane transport 

phenomena (diffusion) model (Eqs. 31-54) and the economic model (Eqs. 65-82) solved with 

DICOPT (GROSSMANN et al., 2016)  programmed in GAMS™ (ROSENTHAL, 2015) using 

the results obtained from the genetic algorithm as initial values. In particular, the MINLP is 

solved considering the number of pressure vessels (Npv) as a continuous variable and then is 

re-run fixing the Npv to the nearest integer value. 

  
 Figure 18 presents the summary of the proposed methodology, two stages are identified, 

the first stage consists in the pre-processing of the rigorous data to obtain the metamodel 
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coefficients, this is done only one time since the metamodel is adjusted to all the operational 

region. The second stage consists of the use of a genetic algorithm with the metamodel obtained 

in the first stage (pre-processing) to compute initial values used to solve the rigorous MINLP. 

 

 
Figure 18. Stochastic – deterministic flowchart methodology 
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5 BOUND CONTRACTION METHODOLOGY RESULTS FOR REVERSE 

OSMOSIS NETWORKS 

 
In an attempt to implement Rysia, the bound contraction strategy proposed by (FARIA; 

BAGAJEWICZ, 2012), there is a need to develop a relaxed version (linear lower bound) of the 

rigorous MINLP. To construct a MILP lower bound, the bilinear terms (product of flow and 

concentration) from the mass component balances are linearize partitioning one of the variables, 

and for the product of a continuous and binary variable, the direct partitioning procedure 1 

(DPP1) is used, see appendix 2 for more details. 

For the membrane diffusion model the presence of exponential terms made to select a 

different approach, which is the use of images of monotone functions in each domain variable’s 

partition, as it was performed in several papers (CARVALHO; SECCHI; BAGAJEWICZ, 

2016; KIM, S Y; BAGAJEWICZ, 2017; KIM, Sung Young et al., 2017; KIM, Sung Young; 

BAGAJEWICZ, 2016) that follow the one introducing Rysia (FARIA; BAGAJEWICZ, 2012). 

 

To obtain the aforementioned images, after an algebraic manipulation of equations 31 – 

54, the following expressions are obtained: 

 

, , , , , ,
ˆˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ1 2 3 4 5 * 1000 6 *1000Pe

m e m e m e m e m e mem P m e PW W P W a TW a TW S a TW        (128) 

 , , , ,
ˆ ˆ ˆ ˆ7 8 9 1000 10 (1000 )m e m e m e mem P m e PW b W W S W                             (129) 

 

    Where W1m,e to W10m,e are functions of different variables that need to be discretized, 

so it is necessary to determinate the monotonicity of these functions to see if they are increasing 

or decreasing functions. For these is necessary to differentiate each function respect to each 

variable and determinate according to the bounds of the variable if the value of the derivative 

is positive or negative. 

 Following is presented the obtained expressions for W1m,e, just for illustrative purposes, 

the remaining variables and is corresponding expressions are available in appendix 3.   
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Where the product of binary variables is substituted by the following continuous 

variable and its corresponding set of equations: 
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To use the expressions presented in appendix 3, the partitioned variables appearing in 

equations needs are discretized according to: 
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When running Rysia, the upper bound is the rigorous MINLP and is run using the results 

from the lower bound as initial values, although some results for the general superstructure can 

be obtained with the lower bound model, the system was evaluated rigorously by fixing as many 

variables as possible with the values of the LB to obtain a feasible solution. 

Before trying bound contraction, an attempted to increase the number of partitions in 

the lower bound to see if the gap at the root node can be reduced, was done. Results for a two 

stages RON, with seawater concentration of 35,000 ppm and a target permeate production of 

100 kg/s (maximum permeate concentration 500 ppm, and maximum brine concentration 

87,000 ppm) are presented in Table 4. Results show that a region where there is no improvement 
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in the objective value when the number of intervals for the partitioned variables was increased, 

is reached.  

When running with 2,4,8 and 10 intervals to partition the decision variables, a sequence 

of slowly increasing lower bound values ($1,293,594, $1,318,176, $1,528,365, and $1,540,456) 

at an elevated computational cost of 0.1,1.3,6.0, and 10 hours, respectively, are obtained. In all 

cases, the upper bound rendered and optimum with an objective of $1,814,528. The gap with 

the MINLP at the best feasible solution attained was 15.1%. Clearly, an increase in the number 

of intervals leads to unacceptable computing times. 

 

Table 4. Results using RYSIA for General superstructure (Two stages, Fp=100kg/s) 
 2 intervals 4 intervals 8 intervals 10 intervals 

Lower Bound 1,293,594 1,318,176 1,528,365 1,540,456 

Upper Bound 1,814,528 1,814,528 1,814,528 1,814,528 

Time  00:05:30 01:19:18 05:58:34 10:05:28 

  

When bound contraction was attempted using two intervals, none of the bounds for the 

partitioned variables could be contracted, instead of using a bound contraction procedure using 

a greater number of partitions for all the variables, different numbers of partitions for pressure, 

solute flux, flows, and concentration were used.  

Figure 19 presents the iterations for the inlet pressure partitioned variable, this is for a 

seawater concentration of 35,000 ppm, a permeate flow of 100 kg/s, and the number of intervals 

for the partitioned variables used were: 4 intervals for pressure, 4 intervals for solute flux, 9 

intervals for net driven pressure, and 2 intervals for the flows. The results are summarized as 

the following:  

 The first run takes about 10 minutes, then the intervals for each partitioned 

variable where the answer is located, are identified. (Lower bound: 1,676,770, 

Upper bound: 1,781,493).   

 It started with the inlet pressure for stage 1 - 1
ROPn , first iteration: the answer is 

in the first interval, so, interval 1, interval 1 + 2, interval 1+2+3, are forbidden, 

respectively. After the third run (intervals 1, 2 and 3 forbidden) the bounds can 

be contracted. (Total number of runs: 3). 

 Inlet pressure for stage 2 - 2
ROPn , first iteration: the answer is in the third 

interval, so, interval 3 and interval 3 + 4, are forbidden, respectively. After the 
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second run (intervals 3 and 4, forbidden) the bounds can be contracted. (Total 

number of runs: 2). 

 Variables: first stage concentration ( 1
ROC ) and turbine pressure difference ( T

tP

), also allows to contract their bounds in the first iteration. (Total number of 

runs: 3). 

 Second iteration: 1
ROPn - the answer is located in interval 1, forbidding intervals 

1, 2, and 3 bounds can be contracted. (Total number of runs: 3) 

 Second iteration: 2
ROPn - the answer is located in interval 2, forbidding intervals 

1 + 2, 2, 1+2+3, 2+3, 2+3+4 bounds cannot be contracted (Total number of runs: 

5). 

 This time variables 1
ROC , T

tP cannot be contracted. 

 Third iteration: for each variable 1
ROPn , 2

ROPn , 5 runs are made, but no bound 

contraction is possible. The procedure finishes. Lower and upper bounds by the 

end of the extended interval elimination strategy:    1,713,724 (LB) vs 1,781,493 

(UB), gap = 3.78%. 

 

After a total number of 21 runs of the MILP lower bound, the extended interval 

elimination took about 3.5 hours to reach a gap of 3.78% between the lower and the 

corresponding MINLP. Getting a better result than those presented in Table 4. 
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Figure 19. Extended interval elimination – RO inlet Pressure 
 

The rigorous MINLP was also run without initial values in Dicopt (GROSSMANN et 

al., 2016) and Antigone (MISENER; FLOUDAS, 2014) obtaining an infeasible solution.  When 

trying Baron (SAHINIDIS, 1996), after a predefined time limit of 250 hours the solver finished 

without attaining convergence, with the relative gap at 18.72%.  Baron (SAHINIDIS, 1996) 

fixing the binary variables for the number of membrane modules was also ran, without 

obtaining a feasible solution. 

All the above results show that the nonlinearity of the RON-MINLP model presents 

important convergence difficulties, and is computationally expensive, especially if good initial 

values are unknown for local solvers. While it results difficult to explain the reasons why Baron 

and Antigone fail, in the case of Rysia, it could be said that it should be able to solve the problem 

with enough number of partitions, if it was not for the computational effort involved, as 

previously mentioned. 

Given the solution difficulties associated with the nonlinearities of the solution-

diffusion model, an additional approach was tested, this time the equations 31 – 54 were 

replaced by the metamodel equations 124 for the linear permeate flow, Eq.122 for a linear 

approximation of permeate concentration and Eq.123 for a permeate concentration quadratic 

approximation. So, if equations 124 and 122 are used the resulted model will be referred as 

linear metamodel, and if equations 124 and 123 are used this will be a non-linear metamodel. 
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Then these variables ( ,
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m eF , ,
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m eC ) are partitioned using the following expressions: 
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Where variable , , , ,P C Fm e d d dW , substitutes the product of the binary variables 
ˆˆ ˆ

, , , , , ,P C F

Pin Cin Fin

m e d m e d m e dy y y , 

with the next constrains: 
ˆ

, , , , , ,P C F P

Pin

m e d d d m e dW y                                                            (141) 
ˆ

, , , , , ,P C F C

Cin

m e d d d m e dW y                                                            (142) 
ˆ

, , , , , ,P C F F

Fin

m e d d d m e dW y                                                            (143) 
ˆˆ ˆ

, , , , , , , , , , 2
P C F P C F

Pin Cin Fin

m e d d d m e d m e d m e dW y y y                                          (144) 

 

     
           
   

22 2

1 2 , , 3 , , 4 , , 5 , , 6 , , 7 , ,

2 22 2 2 2

8 , , , , 9 , , , , 10 , , , ,

22

11 , , , , , ,

ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

ˆˆ ˆ

P C F P C F

P C P F C F

P C F

P C

in in in in in in

m e d m e d m e d m e d m e d m e d

in in in in in in

m e d m e d m e d m e d m e d m e d

d d d in in

m e d m e d m e

K K P K C K F K P K C K F

K P C K P F K C F

K P C F

     

  


  

 

   

, , , , ,
2

12 , , , , 13 , , , ,

14 , , , , 15 , , , , , ,

22

1 2 , , 1 3 , , 1 4

,

ˆˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ

ˆˆ ˆ

P C F

F P C P F

C F P C F

P C

P C

Pe

m e d d d m e

in in in in in

d m e d m e d m e d m e d

in in in in in

m e d m e d m e d m e d m e d

in in

m e d m e d

Pe

m e

d d

W C

K P C K P F

K C F K P C F

K K P K C K

C

 

 
 
 
 

 
  
 
   

  

 

 
           
     

2

, , 1 5 , , 1 6 , , 1 7 , , 1

2 22 2 2 2

8 , , 1 , , 1 9 , , 1 , , 1 10 , , 1 , , 1

22 2

11 , , 1 , , 1 , , 1 12 , ,

ˆˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ

F P C F

P C P F C F

P C F P

in in in in

m e d m e d m e d m e d

in in in in in in

m e d m e d m e d m e d m e d m e d

in in in

m e d m e d m e d m e d

F K P K C K F

K P C K P F K C F

K P C F K P

   

     

  

  

  

 
, , , ,

1 , , 1 13 , , 1 , , 1

14 , , 1 , , 1 15 , , 1 , , 1 , , 1

ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ

P C F

F

C P F

C F P C F

m e d d d

d in in in in

m e d m e d m e d

in in in in in

m e d m e d m e d m e d m e d

W

C K P F

K C F K P C F

   

    

 
 
 
 
 
 
 
   



 

(145) 

Equation 145 corresponds to the quadratic metamodel, for the linear metamodel 

equation will look like equation 144 with the corresponding coefficients. (Details of the fitted 

coefficients and metamodel construction are presented in section 6.1). 

When running the quadratic metamodel MILP with 6,7,8 and 10 intervals to partition 

the decision variables, a sequence of slowly increasing lower bound values ($1,554,772, 

$1,590,182, $1,619,466, $1,632,549) at an elevated computational cost of 1.1, 2.0, 4.2, and 8 

hours, respectively, are obtained. In all cases, the upper bound rendered an optimum with an 

objective of $1,869,372 (which is 4.9% larger than the optimum identified with the extended 

interval elimination using the rigorous MINLP). The gap with the MINLP at the best feasible 

solution attained was 12.7%. Once again when bound contraction procedure was applied using 

two intervals, none of the bounds for the partitioned variables could be contracted. 
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When running the linear metamodel MILP with 6,8,10 and 16 intervals to partition the 

decision variables, a sequence of slowly increasing lower bound values ($1,358,000,  

$1,482,000, $1,500,000, $1,536,000) at computational times of 0.1, 0.5, 1.17, and 2.5 hours, 

respectively, are obtained. This time the computational costs are lower than in previous cases 

(Images of monotonic functions, and quadratic metamodel), rendering in all cases an optimum 

upper bound of $1,728,753 which underestimate significantly the upper bound value, because 

of the simplifications of the linear expressions used. When bound contraction was implemented 

using two intervals, despite it allowed to contract 1
HPPC , 2

BC , 1
ROC , Fs , 1Npv  and 1

HPPp  

variables, allowing three iterations, the final gap was 30.2% ($1,205,246 vs. $1,728,753 lower 

and upper bounds, respectively). With such results, the linear metamodel MILP approach could 

not be recommended to solve this problem. 

 Rysia using the monotone partitioned functions (rigorous approach) was also used to 

solve the same optimization problem (35,000 ppm seawater concentration and 100 kg/s 

permeate flow target), but this time for a single stage reverse osmosis network, to see if the 

same convergences difficulties are presented in a simpler problem (less optimization and binary 

variables). Results are presented in Table 5, the best gap obtained was 13.5% ($1.628.467 vs. 

$1.881.776) with a computational time of 8.3 hours. This time the MINLP objective value was 

3.7% larger than the MINLP value for two stages ($1,881,776 vs. $1,814,528), results 

consistent with the literature, and mathematically validated in section 6.2. 

  

Table 5. Results using RYSIA for one stage RON 

 4 intervals 5 intervals 6 intervals 7 intervals 10 intervals 

Lower Bound 1,239,876. 1,379,018 1,523,356 1,535,628 1,628,467 

Upper Bound 1,881,776 1,881,776 1,881,776 1,881,776 1,881,776 

Time  00:00:30 00:01:13 00:04:40 00:58:50 08:20:50 
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When bound contraction procedure using extended interval elimination was 

implemented for a single stage using 5 intervals, despite the variables Fs  and inemF could be 

contracted, allowing three iterations the final gap at the end of the procedure was 26.2% 

($1,389,058 vs. $1,881,776), results are presented in Table 6.  

 

Table 6. Bound contraction using extended interval elimination (5 intervals)  
single stage RON. 

Variables 

to contract 

Original 

Bounds 

1 iteration 2 iteration 3 iteration 

 Lower upper Lower upper Lower upper Lower upper 

FS 150 200 160 200 160 176 166.4 172.8 

Finem 1.5 3.5 1.5 2.7 1.5 2.7 1.5 2.7 

Pnro 60 80 60 80 60 80 60 80 

LB 1,379,018 1,379,405 1,389,058 1,389,058 

UB 1,881,776 1,881,776 1,881,776 1,881,776 
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6 STOCHASTIC-DETERMINISTIC METHODOLOGY RESULTS FOR REVERSE 

OSMOSIS NETWORKS. 

 

6.1 Reverse osmosis metamodel adjustment 

 
  The nonlinear mathematical model needs to solve a non-linear system equation with 17 

variables to establish the relationship between the feed flow rate and composition with the 

permeate composition and flow rate. The largest computational time-consuming part of the 

algorithm is the calculation of the permeate conditions.  

 

 To address the above issue, it was built a mesh with the rigorous model solutions and 

regressed them using a linear and non-linear metamodel. Table 7 presents the limits for each 

variable of the mesh and the total number of data points used to fitting the metamodel. 

 

  Table 7. Limits and points of solution mesh for RO metamodel. 

Variable lower Bound Upper Bound Interval Points 

Inlet salt 

concentration 

20000 85000 2500 28 

Feed flow rate 1 3.6 0.1 28 
Inlet pressure 30 80 2.5 22 

   Total Points 8624 

 

  Figure 20 shows the influence of feed pressure and concentration on the permeate 

concentration using the rigorous method. The reduction in feed pressure and the increase in the 

feed concentration increases the permeate concentration. This is explained by the salt transport 

through the membrane being mainly diffusive; thus, an increase in the feed concentration 

increases the salt concentration difference through the membrane increases the salt transport. 

On the other hand, a reduction in pressure increases the permeate concentration because at low 

pressure the water transport is low. For high pressure and low concentration, the permeate 

concentration has a linear behavior, while a pressure reduction and an increase in the 

concentration renders a non-linear behavior. Figure 20 shows a boundary in the permeate 

concentration behavior from linear to non-linear.  
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Figure 20. Influence of feed pressure and concentration on the permeate concentration. a) 
Lateral view. b) Top View. 

 
  Figure 21 shows the influence of feed pressure and concentration on the permeate flow 

rate, brine concentration, and brine flow rate using the rigorous method. It shows a linear 

behavior for all the studied region. The permeate flow increases with the pressure and decreases 

with the salt concentration (Figure 21-a), explained by the increase in pressure, which augments 

the water that crosses through the membrane, thus increasing the permeate flow. Next, the 

permeate flow decreases with the increase in salt concentration because it increases the osmotic 

pressure in the brine, which reduces the driving force for the transport of water, thus reducing 

the permeate flow. In turn, the brine concentration (Figure 21-b) increases with the feed 
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pressure and concentration because the increase in the pressure increases the amount of water 

that crosses through the membrane, thus increasing the salt concentration in the brine. Finally, 

the brine flow reduces with pressure and increases with salt concentration (Figure 21-c); this 

behavior is explained by the reasons previously outlined.  
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Figure 21. Influence of feed pressure and concentration on a) permeate flow rate, b) brine 
concentration and c) brine flow rate. 

 

  For the linear metamodel correlation, was chosen feed concentrations between 20,000 

and 45,000 ppm, the pressure between 40 and 80 psi and feed flow rate between 1.5 and 3.5 

kg/s. As stated, a genetic algorithm was used for the parameters’ estimation. Figure 22 

compares the rigorous mesh and linear metamodel for a feed flow of 2.5 kg/s. The highest 

deviation was for the permeate concentration because this variable has the largest non-linear 

behavior.  

Table 8 shows the adjusted parameters for the linear metamodel. It could be noted that several 

parameters are very small and thus do not contribute much to the correlation. 
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Figure 22. Linear metamodel correlation and rigorous solutions. a) Permeate Flow; b) 
Permeate Concentration; c) Brine Flow; d) Brine concentration. 
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Table 8. Linear metamodel constants  
 K1 K2 K3 K4 

Fps 0.0139 0.0054 -6.24 e-06 0.0311 
Cps 156.9561 -2.7875 9.1532e-3 -35.532 
Fbs -0.0139 -0.0054 6.24 e-06 0.9689 
Cbs 150.63 102.24 1.009 -1,490.22 

 

  For the non-linear metamodel correlation, were chosen feed concentrations between 

20,000 and 80,000 ppm, the pressure between 40 and 80 psi and feed flow rate between 1.5 and 

3.5 kg/s. As stated, a genetic algorithm was used for the parameters’ estimation. Figure 23 

shows the comparison between the rigorous mesh and non-linear metamodel for a feed flow of 

2.5 kg/s.  The highest deviation was for the behavior of the permeate concentration because this 

variable has the most non-linear behavior. Table 9 shows the adjusted parameters for the non-

linear metamodel. The non-linear fit increases with the number of parameters used in the 

correlation process. Finally, it could be noted that several parameters are very small and thus 

do not contribute much to the correlation. 
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Figure 23. Non-Linear metamodel correlation and validation. 
 

Table 9. Non-Linear metamodel constants and objective function. 
 Cps Fps 

K1 446.1412 -0.2192 

K2 10.0193 5.62130e-4 

K3 7.2968 e-06 2.7489 e-06 

K4 37.7918 0.1020 

K5 -202.9078 -8.7533 e-08 

K6 0.2196 5.1089 e-06 

K7 -143.1272 -3.1395 e-06 

K8 1.3714 e-11 3.4639 e-08 

K9 3.4176e-3  

K10 4.3866 e-09  

K11 1.9653 e-13  

K12 1.7407e-2  

K13 6.6979  

K14 -8.8748e-3  

K15 -4.6595 e-05  
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6.2 Reverse osmosis network results 

 
 

The data for the modules are presented in Table 1 and the economic parameters are 

presented in Table 2. Table 10 shows the optimization results for the RO system for a targeted 

permeate concentration of 500 ppm and a flow rate of 100kg/s, with an inlet water concentration 

of 35,000 ppm. A maximum of 87,000 ppm for the brine concentration was set, a reasonable 

value before scaling onset. The necessary parameters to describe the diploid GA (FONTEIX et 

al., 1995)  used, were: 1000 individuals, 10 generations, 100 survivors, 100 mutants and a 

mutation rate equal to 0.01 In Table 10 is reported the final number of vessels obtained 

considering it as a continuous value and in the case of the MINLP, both are reported, the 

continuous value obtained as well as the fixed value used for the final MINLP run (in between 

parenthesis).  The TAC reported for the MINLP is based on the integer value of the number of 

vessels. The optimization renders the flow of the brine and the inlet flow needed.   

 
Table 10. Optimization results. 

 Genetic 

Algorithm using 

the Metamodel 

Genetic 

Algorithm using 

the Rigorous 

Model 

Rigorous MINLP  

TAC $1,796,169 $1,806,500 $ 1,781,499 
Stage S1 S2 S1 S1 S1 S2 

Inlet Pressure (bar) 73 80 67.6 79.9 63 79.4 
Salted water flow (kg/s) 167.65 167.65 166.57 

Each Pressure vessel Inlet 

Flow  (kg/s) 

3.5 3.5 2.14 3.47 2.6 2.59 

Number of modules   8 8 8 8 8 8 
Number of pressure vessels As 

continuous variable- (As 

integer) 

47.9 25.4 78.3 24.5 63.6 (64) 37.2 
(37) 

Flow Recycle 1 (kg/s) 0 0 0 
Flow Recycle 2 (kg/s) 0 0 0 

Computing  time   ~20 min    280 hours  5.5 sec 
(Permeate concentration: 500 ppm; permeate flow rate: 100kg/s;                                           

Inlet water concentration: 35000 ppm) 
 

The rigorous MINLP models using the results from the GA’s as a starting point, give 

the same result with slightly different solution times (5.7 seconds for using the initial values 

from the GA run using metamodel vs 6.8 seconds using the initial values from the GA run with 

the rigorous model).  It should be noted that the genetic algorithm using the rigorous model was 
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disproportionally time consuming (280 hours vs. 20 minutes). The time-consuming step is the 

iterative solution of the nonlinear set of equations.  

The fitness (TAC) of each individual of the population at each GA iteration is evaluated 

by solving the membrane module equations (Eqs 31-54). This is done as follows: The total inlet 

flow and the inlet concentration are known from the problem specification then Eqs 31-54 are 

solved to obtain permeate flow and concentration, the brine flow and concentration are 

calculated from the mass balance. It needs to be reminded that the Matlab “solve” feature is 

used in this step, of which there is little detailed information. These values are then used as the 

inlet conditions for the next module. Once the last module is solved, the concentration of the 

recycle is known and one can start at the first module again upon convergence. 

 Each solution of Eqs 31-54 takes for a single membrane module 5 to 60 seconds to be 

solved, and a single stage takes about 10 iterations to converge. Thus, this explains the large 

computing time when realizing it that 1000 individuals and 10 generations are used. 

Conversely, the metamodel does not need to iterate to solve the same module equations.  

Table 10 presented the TAC for the rigorous MINLP fixing the number of pressure 

vessels Npv to the nearest integers values obtained from the rigorous MINLP (considering Npv 

as continuous), the TAC values differ only in a 0.00033% indicating that the approximation 

does not introduce a significant error. 

Because several runs were made using the GA with the metamodel followed by the 

rigorous MINLP (as detailed below), finding similar times (less than 30 minutes), one could be 

confident that the pattern will repeat for other cases and/or with other parameter data.   

Thus, for the rest of this chapter, it will be used a genetic algorithm using metamodels 

to initialize a rigorous MINLP model.   

The results for different inlet water concentrations and different targets permeate flows 

and a permeate concentration of 500 ppm are shown, for two stages, in Table 11. 

 It could be noted that in this case, the permeate flow is no longer fixed, instead, the 

inlet flow is fixed maintaining a maximum brine concentration of 87,000 ppm. 

  Results presented in Table 11 do not show a brine recycle flow, despite that recycling 

helps reducing concentration polarization (increasing the velocity through the membrane 

module). Optimal solutions avoid it because the recycle pumps (HPPR) needed to compensate 

for the pressure drop of the membrane module, thus increasing the total capital cost and power 

consumption since they are high-pressure pumps. Incidentally, brine recycles also increases the 
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system salt passage leading to unacceptable salt permeate concentrations in some cases (DOW 

WATER & PROCESS SOLUTIONS, 2011).   

 

Table 11. Optimal solutions for different scenarios 
Feed seawater 

concentration 

(ppm) 

30000 40000 50000 

 GA with 

metamodel 

Rigorous 

MINLP 

GA with 

metamodel 

Rigorous 

MINLP 

GA with 

metamodel 

Rigorous 

MINLP 

TAC $4,723,835 $4,700,784 $2,582,401 $2,629,873 $532,703 $551,140 
Stage S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 

Inlet Pressure 

(bar) 

78.4 80 55.8 73.5 73.4 78.8 65.9 75.3 75.4 77.6 78.1 76.8 

Salted water flow 

(kg/s) 

450 450 250 250 50 50 

Permeate flow 

(kg/s)  

296.5 296.5 135.8 135.8 21.38 21.38 

Pressure vessel 

Inlet Flow  (kg/s) 

4.0 4.0 1.8 1.5 4.0 4.0 2.4 2.1 4.0 4.0 2.5 2.7 

Number of 

modules 

8 8 8 8 7 8 7 8 5 7 5 7 

Number of 

pressure vessels-

As continuous 

variable (As 

integer) 

112.5 52.9 245.6 
(246) 

155.6 
(156) 

62.6 38.2 103.6 
(104) 

73.9 
(74) 

12.5 9.0 19.6 
(20) 

12.8 
(13) 

Flow Recycle 1 

(kg/s) 

0 0 0 0 0 0 

Flow Recycle 2 

(kg/s) 

0 0 0 0 0 0 

Computing  time ~20 min 4.2 sec ~22 min 5.1 sec ~24 min 4.7 sec 
(Permeate maximum concentration: 500 ppm) 

The main differences in the operation conditions (decision variables) between the 

genetic algorithm using the metamodel and the rigorous MINLP (Table 11) are associated to 

the precision of the metamodel, which underestimates some values of the operating variables 

in the region closer to the bounds. Thus, although the genetic metamodel is not completely 

suitable to determine operating conditions, it produces good initial estimates as starting points 

for the rigorous MINLP. 

 Now is presented an analysis of the effect of the feed flow and the salt concentration in 

the feed on the total annualized cost. Figure 24 presents the rigorous solution obtained for a 

feed flow between 50 and 450 kg/s and a feed salt concentration between 20,000 and 50,000 

ppm and running the GA with the metamodel, followed by the rigorous MINLP solved using 

Dicopt with initial values obtained from the GA.  
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The results show that the TAC presents two regions with an apparent maximum at  

30,000 ppm of feed concentration. It cannot be said for sure that the maximum is exactly at 

30,000 ppm, given the discrete nature of the number of points investigated.  For a fixed flow 

the differences in the extremes are -3,6% (cost for 20,000 ppm vs cost of 30,000 ppm) and -

2.6% (cost for 50,000 ppm vs cost of 30,000 ppm).  

For a feed concentration of 30,000 ppm and larger the TAC does not change 

significantly because the requirements for a larger pump power are compensated by less 

membrane area due to higher concentrations. On the other side, for feed concentrations of 

20,000 and 25,000 ppm, the reduction is due to the use of membrane module with high retention 

parameters for seawater, while these concentrations are more related to brackish water 

concentrations.  

The reduction in TAC here is due to smaller pumping needs driven by lower 

concentrations.  

 With such small differences in TAC for a large range of feed, concentrations lead to 

conclude that an average TAC for each flow is a good representation of all.  

 

Figure 24. TAC for different inlet flows and seawater concentrations (two stages) 
 

  Now is explored the influence of the number of RO stages. The results are presented in 

Figure 25: the maximum TAC difference between 3 stages and 2 stages is about 1.6% (Figure 

25a); although it is not noticeable in the figure the surfaces have a transition point from constant 

TAC to monotone TAC at 30,000 ppm, as explained above. 
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  The TAC values for two stages are lower than for three stages for feed concentrations 

of 40,000 ppm and larger. For feed concentrations of 35,000 ppm and lower the design for three 

stages is lower in cost than for two stages, again barely noticeable in the figure.  

  This behavior is obtained using linear cost for pumps as a function of power (Equations 

69-71). It could be argued that the use of a power law for cost, with other exponents, might 

change the results. Indeed, Lu et al. (2013) and Kim et al. (2009)  used a power law with an 

exponent of 0.96 and the general literature on costs suggests values as low as 0.5.  

  The model was tested for various points using 0.96, 0.7 and 0.5. The results are always 

the same: for every flowrate, the region where 3 stages are of lower cost than 2 stages are for 

every flow below 35,000 ppm. For 40,000 ppm and above two stages are cheaper than three. 

This is consistent with the fact that at higher concentrations the power is constant because the 

pressure has reached its maximum. 

   Thus, two pumps make more sense than three pumps in that region. Below 40,000 ppm, 

more pumps are compensated by a smaller number of membrane modules (lower membrane 

area). The extreme differences (cost of 3 stages vs cost of two stages) are -1.59% and +5.97 % 

for n=0.96, -3.38% and +18.30 % for n=0.7, and -3.51% and +19.25 % for n=0.5. These are big 

differences and are a warning about the cost functions that need to be used.    

  In turn, the optimal TAC results for one stage are larger than those for two stages with 

a maximum difference close to 7% (Figure 25b).  
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   Figure 25. Effect of the number of stages. (a) 2 vs 3 stages, (b) 1 vs 2 stages 

 

  When analyzing the results, there were solutions that used the maximum membrane 

modules allowed in a pressure vessel according to the fabricant, especially those corresponding 

to 35,000 ppm or lower. So, a new set of solutions was obtained allowing the variable to use up 

16 membrane modules. In this case, solutions using up to 14 membrane modules were found. 

These results are presented in Figure 26. The maximum difference between the use of a 

maximum of 8 modules and 16 modules was lower than 0.7% (indistinguishable in the figure), 

so there is no improvement in using a larger number of membrane modules per vessel. This 

behavior is explained because an increase in the maximum membrane modules is compensated 

with variations on the inlet stage conditions (Pressure and pressure vessel inlet flow inem

mF ), but 

these variations have not significant effect on the TAC. It could be concluded that the model is 

rather insensitive to the number of modules and that also perhaps explains the convergence 

difficulties.  
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Figure 26. TAC for different inlet flows and seawater concentrations max number of 
membrane modules (Nmax

e) equal to 16 
 

  All the above results represent optimal values obtained minimizing the TAC for a fixed 

concentration and flowrate of the permeate (Table 10), or flowrate of the feed (rest of results). 

Now is investigated the minimization of the cost per unit of freshwater produced with a fixed 

targeted concentration. Results are shown in Figure 27. It could be observed a sensitivity to the 

feed concentration and the feed flow, different from the observed in Figure 24. In the case of 

Figure 24, for a fixed permeate concentration of 500 ppm, the TAC is not significantly affected 

by the change in the feed concentration when the feed is maintained constant. However, when 

the inlet concentration varies, the amount of permeate flow decreases with feed concentration 

(shown in Figure 28). Since the TAC values for both figures (Figure 24 and Figure 27) are the 

same, but the amount of obtained freshwater varies with the inlet concentration the cost per unit 

of produce fresh waters increases with the feed concentration.  
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Figure 27. Optimal TAC per unit permeate flow. Concentration of permeate: 500 ppm.

 
Figure 28. Permeate flow (2 stages, 500 ppm permeate). 
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6.3 Water production costs comparison with existing facilities: 

 
 

Table 12 presents water production costs in US $/m3 for operating plants around the 

world, for two installed capacities range.  Basically, the water production costs reduce as the 

installed plant capacity increases because of a scale economy.                                                         

According to  Ghaffour et al. (2013) the water cost was US$ 2.10/m3 in 1975 and the 

price has been reduced to US$ 0.5/m3 for SWRO in 2004. 

 

Table 12. Water production costs for existing plants. 
Source Plant size 

(m3/day) 

Water production cost 

(US $/m3) 

References 

Seawater 

1,000 – 4,800  0.70 – 1.72 

Avlonitis (2002) 
Rayan (2003) 

Zejli et al. (2004) 
Atikol; Aybar (2005) 

Hafez; El-Manharawy (2003) 

15,000 – 60,000 0.48 – 1.62 

Avlonitis (2002) 
Leitner (1991) 

Poullikkas (2001) 
Wade (2001) 

Wu; Zhang (2003) 
Agashichev (2004) 

Agashichev; El-Nashar (2005) 
 
 

In Table 13 are presented the minimum water production costs calculated with the 

rigorous MINLP, using the proposed stochastic-deterministic optimization methodology, are 

also presented the total capital investment and the energy consumption. All the values for the 

water production cost are close to 0.5 US $/m3, the value reported by Ghaffour et al. (2013). 

These values are in the range of the reported production costs of existing facilities in Table 13, 

allowing to validate what actually is been obtained with the rigorous MINLP. Ghaffour et al. 

(2013) also reported that the capital investment for each m3/day of water produced should be 

between 900 and 2,500 US $, which is consistent with the reported values in Table 13.  

 

In terms of energy consumption Ghaffour et al. (2013) reported between 3 and 4 

kWh/m3 for existing facilities, and according to Shrivastava et al. (2015) the minimum specific 

energy, defined as the energy required to produce unit volume of freshwater from the 

thermodynamically point of view for 50% of recovery, and 32,000 ppm of NaCl at 25°C is 2.12 
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kWh/m3, which is a consistent value with 2.86 kWh/m3 obtained with the MINLP. The 

difference between both energy consumption values is because of the main energy consuming 

equipment efficiencies (0.75 for both pumps and turbines), and the entropy creation.  

 

Table 13. Water production costs calculated with the model (Feed concentration 30,000 ppm). 
Plant size 

(m3/day) 

Water 

production cost 

(US $/m3) 

Total Capital 

investment  

(US$) 

Capital 

investment 

(US $/m3/day) 

Energy 

consumption 

(kwh/m3) 

2,846 0.54 2,805,200 986 2.86 
19,927 0.51 17,020,000 854 2.86 
25,620 0.51 21,536,000 841 2.86 
31,314 0.49 26,000,000 830 2.86 
59,781 0.49 47,805,000 800 2.86 
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7 STOCHASTIC-DETERMINISTIC METHODOLOGY RESULTS FOR RO+PRO 

HYBRID SUPERSTRUCTURES. 

 

7.1 Pressure retarded osmosis metamodel adjustment 

 
The nonlinear mathematical model needs to solve a non-linear system equation with 15 

variables to establish the relationship between flow and concentration of the draw and feed 

solutions (input parameters) with the salt and water fluxes (with these two variables output 

flows and concentrations can be calculated).  

So, there are five input parameters 
, , , ,, , ,D in D in F in F inF C F C , feed and draw solutions 

conditions basically, and the fifth parameter is the feed input pressure 
,D inP , but as mentioned 

in the PRO description the optimal pressure difference that maximizes the power generation (

2
p


  ) is used, so, the inlet pressure is not an input parameter in this work.   

Finally, since the PRO is incorporated in the RON structure as an energy recovery system, 

using the brine from the second stage of the RO as draw solution, and the brine concentration 

is fixed at 87,000 ppm, the metamodel is constructed with a mesh for the flow and concentration 

of the feed solution (pre-treated seawater) and the draw solution (brine) flow. Table 14 presents 

the limits for each variable of the mesh and the total number of data points used to fitting the 

metamodel. The feed concentration studied range is for seawater typical values, and the draw 

and feed solutions flow are selected according to recommendations of the membrane fabricant. 

 
 

Table 14. Limits and points of solution mesh for PRO metamodel. 
Variable lower Bound Upper Bound Interval Points 

Feed 

concentration 
20000 40000 5000 5 

Feed Flow 2 3 0.25 5 
Draw Flow 2 4 0.25 9 

   Total Points 225 

 
 Figure 29 presents the rigorous and metamodel meshes for water flux, Figure 29 a) 

presents the fitting for a fixed feed concentration of 35.000 ppm, Figure 29 b) presents the 

fitting for a fixed draw flow of 2.5 kg/s. In both cases, the rigorous solution mesh is below the 

metamodel mesh predicted. The behavior is well represented by a plane since the permitted 

feed and draw flows intervals are tight. As it could be seen an increase in the draw flow produces 
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greater water fluxes for a given feed flow. Increasing the feed concentration reduces water 

fluxes since it reduces the osmotic gradient.  

 

 
Figure 29. Water flux rigorous and metamodel meshes. (a) Fixed feed concentration: 35.000 

ppm, (b) Fixed feed flow: 2.5 kg/s.   
 
 
 Figure 30 presents the solute flux rigorous and metamodel meshes, Figure 30 a) is 

plotted for a fixed feed concentration of 35.000 ppm, Figure 30 b) is plotted for a fixed draw 

flow of 2.5 kg/s. This time the behavior is not as linear as the water flux, and in both figures, 

the predicted metamodel mesh values are below the rigorous mesh. As the draw flow increases 

the solute flux decreases since greater velocities reduce the effect of the external concentration 

polarization. 
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Figure 30. Solute flux rigorous and metamodel meshes. (a) Fixed feed concentration: 35.000 

ppm, (b) Fixed feed flow: 2.5 kg/s.   
 

In Table 15 are presented the fitted coefficients for the linear PRO metamodel. 
 

Table 15. Linear metamodel constants for PRO model 
 K1 K2 K3 K4 

PRO

WJ  6.3275 x 10-03 8.9959 x 10-05 3.2968 x 10-05 -9,8237 x 10-08 
 

PRO

SJ  6.9048 x 10-06 
 

-1.6486 x 10-07  4.8152 x 10-08 
 

-1.1057 x 10-10 
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7.2 Reverse osmosis – pressure retarded osmosis (RO+PRO) results: 

 
 

The data for the RO and PRO modules are presented in Tables 1 and 2 respectively, the 

economic parameters are presented in Table 3.  Table 16 shows the optimization results for the 

RO system and both RO+PRO configurations for a targeted permeate concentration of 500 ppm 

and a flow rate of 90 kg/s, with an inlet water concentration of 35,000 ppm. It was set a 

maximum of 87,000 ppm for the RO second stage brine concentration, a reasonable value 

before scaling onset.  

   

Table 16. Optimization results for hybrid RO+PRO. 
 RO single 

Network 

RO+PRO 

Configuration 1 

RO+PRO 

Configuration 2 

TAC $1,615,783 $1,708,970 $ 1,631,059 
Total Salted water flow (kg/s) 150.00 178.62 152.97 

RO Stage S1 S2 S1 S1 S1 S2 

Inlet Pressure (bar) 59.7 74.9 63.6 76.5 63.9 76.5 
Each Pressure Vessel Inlet 

Flow (kg/s) 

2.2 1.8 2.6 2.1 2.6 2.2 

Number of modules   8 8 8 8 8 8 
Number of pressure vessels  70 47 58 40 58 40 

Flow Recycle 1 (kg/s) 0 0 0 
Flow Recycle 2 (kg/s) 0 0 0 

PRO Unit 

High Salinity Solution Inlet 

Flow to each Pressure Vessel 

(kg/s) 

- 3.8 4.0 

Low Salinity Solution Inlet 

Flow to each Pressure Vessel 

(kg/s) 

- 1.8 1.8 

Number of pressure vessels - 16 16 
High Salinity Solution Inlet 

Pressure (bar) 

- 2.9 3.2 

(Permeate concentration: 500 ppm; permeate flow rate: 90kg/s; Inlet water concentration: 

35000 ppm) 

 

The TAC value for the RO+PRO configuration 1 is greater 5.8 % than the single RO 

network, this is because of the pre-treatment and pumping costs associated to the additional 

seawater used as feed solution for the PRO unit (178.62 kg/s of total seawater pre-treated water 

instead of 150 kg/s for the single RON). Those additional costs are necessary since the PRO is 
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a membrane unit, so it needs low salinity pre-treated supply water. The TAC value for the 

RO+PRO configuration 2 is slightly greater than the single RO network (0.94%), and the total 

pre-treated seawater consume for both cases are similar (152.97 kg/s vs. 150kg/s respectively).  

Besides both configurations used the same brine stream as draw solution (the one 

leaving the second RO stage), the RO+PRO configuration 2 results in an efficient way to 

integrate the PRO unit as an energy recovery system (ERS) since a fraction of the seawater 

intake necessary for the single RO network is used as a low salinity (feed solution) for the PRO 

unit, sharing the pretreatment and pumping systems and just increasing a bit the salt 

concentration of the RO first stage feed flow without affecting the overall performance. 

Since RO+PRO configuration 1 will always produce a higher TAC value than a single 

RO network, from now it will be explored only the RO+PRO configuration 2.  

 
Table 17 presents optimal solutions for different seawater concentrations and a feed 

flow of 250 kg/s, the differences in TAC values are lower than 1%, indicating an almost 

constant behavior for different inlet concentrations. For three cases the feed ratio for high 

salinity solution (brine of RO second stage) to low salinity feed (seawater) was 2.22 and could 

be observed how the inlet optimal pressure decreases with an increase in the seawater salinity, 

this is related with a greater osmotic pressure for the low salinity solution (seawater) reducing 

the osmotic exploitable gradient. 

 
Table 17. Optimal solutions for different scenarios 

 30000 ppm 40000 ppm 50000 ppm 

TAC $ 2,658,199 $ 2,672,257 $ 2,684,237 
Total Salted water flow (kg/s) 250 250 250 

RO Stage S1 S2 S1 S1 S1 S2 

Inlet Pressure (bar) 59.8 77.2 68.3 75.4 77.1 76.8 
Each Pressure Vessel Inlet Flow 

(kg/s) 

2.5 2.0 2.7 2.4 2.9 2.8 

Number of modules   8 8 8 8 8 8 
Number of pressure vessels  100 68 95 64 87 61 

Flow Recycle 1 (kg/s) 0 0 0 
Flow Recycle 2 (kg/s) 0 0 0 

PRO Unit 

High Salinity Solution Inlet Flow 

to each Pressure Vessel (kg/s) 

4.0 4.0 4.0 

Low Salinity Solution Inlet Flow 

to each Pressure Vessel (kg/s) 

1.8 1.8 1.8 

Number of pressure vessels 22 30 37 
High Salinity Solution Inlet 

Pressure (bar) 

3.6 2.8 2.2 

 (Permeate maximum concentration: 500 ppm) 
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  Now an analysis of the effect of the feed flow and the inlet salt on the total annualized 

cost for the RO integrated with PRO is presented. Figure 31 presents the rigorous solution 

obtained for a feed flow between 50 and 450 kg/s and a feed salt concentration between 20,000 

and 50,000 ppm, running the GA with the metamodel, followed by the rigorous MINLP solved 

using Dicopt with initial values obtained from the GA. The results show that the TAC of the 

RO integrated with PRO increase linearly with the feed flow increase and remain almost 

constant with changes in the salt feed concentration. 

 

Figure 31. TAC RO+PRO configuration 2 for different inlet flows and seawater 
concentrations. 
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  Figure 32 shows the comparison between the TAC for the RO with the TAC for the RO 

integrated with PRO for different feed concentration and feed flow, The RO integrated with 

PRO shows the highest TAC for all the evaluated coordinates. 

  Nevertheless, the highest difference between both configurations was 2%. The RO 

shows lower TAC because is a mature technology researched for a long time. An improvement 

in PRO technology through research could reduce the TAC of integrated technology. 

 

 

Figure 32. Comparison between TAC for RO and RO+PRO (configuration 2) for different 
feed concentration and flow. 
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8 CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 Conclusions 

 
 A new methodology to solve a nonlinear mathematical model for the optimal design of 

RO is proposed. Metamodels were used to reduce the mathematical complexity and get accurate 

solutions using a genetic algorithm. Then, the results were used as initial values to solve the 

full nonlinear model using GAMS/DICOPT. This allows getting optimal solutions for a 

complex MINLP problem with less computational effort. One of the major advances of this 

approach is that initial values are not needed (always a problem for practitioners using MINLP 

codes), as the GA provides them.  

 

 When the new bound contraction methodology was used, the upper bound is the 

rigorous MINLP and is run using the results from the lower bound (constructed by images of 

monotone functions in each domain variable’s partition) as initial values. Before trying bound 

contraction, it was attempted to increase the number of partitions in the lower bound to see if 

the gap at the root node can be reduced. The result is that a region where there is no 

improvement in the objective value when the number of intervals for the partitioned variables 

was increased, was reached. When bound contraction was attempted using two intervals, none 

of the bounds for the partitioned variables could be contracted. 

 

 The new stochastic – deterministic proposed methodology allows exploring the effect 

of the feed flow, seawater concentration, number of reverse osmosis stages, and the maximum 

number of membrane modules in each pressure vessel on the total annualized cost of the plant. 

 

 The total annualized cost increases with an increase in the feed flow and presents little 

variations for different feed salt concentrations at a fixed inlet flow, indicating that a reverse 

osmosis plant could have adaptation capability for variations in the inlet concentration without 

major effects on the TAC.  

 

 The effect of the number of stages was studied for different feed flows and seawater 

concentrations, finding that one stage has the largest TAC and the differences between two and 

three stages are small, but dependent on the costing of pumps used.  
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The effect of the number of membrane modules in a pressure vessel was also investigated, 

finding that increasing the maximum number of membranes allowed in a commercial pressure 

vessel does not have any advantage over the TAC values obtained. 

 
 Two-hybrid RO+PRO superstructures were the PRO unit uses the chemical potential of 

the brine stream of the RO to generate electrical power, acting as an energy recovery unit, were 

proposed, and optimized with the new stochastic-deterministic methodology. 

 
The second proposed configuration for the system RO+PRO showed a lower TAC than 

the first one. Besides both configurations used the same brine stream as draw solution, the 

second one results in an efficient way to integrate the PRO unit as an energy recovery system, 

since a fraction of the seawater intake necessary for the single RO network is used as a low 

salinity (feed solution) for the PRO unit, sharing the pretreatment and pumping systems and 

just increasing a bit the salt concentration of the RO first stage feed flow without affecting the 

overall performance. So, the second configuration is recommended for the industrial 

implementation of the integrated technology. 

 

The hybrid RO+PRO configuration presents the same behavior to variations in feed flow 

and concentration as the single RON, this is an increase in TAC values with an increase in the 

feed flow and little variations for different feed salt concentrations at a fixed inlet flow. 

 

The comparison between the TAC for the RO with the TAC for the RO integrated with 

PRO for different feed concentration and feed flow was developed. The RO integrated with 

PRO shows the highest TAC for all the evaluated coordinates. Nevertheless, the highest 

difference between both configurations was 2%. The RO shows lower TAC because is a mature 

technology researched for a long time. An improvement in the PRO energy recovery efficiency 

could reduce the TAC of the integrated technology since the energy cost of the RO network 

represents its major operational costs. 
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8.2 Recommendations to future works 

 
As identified in this work, it will be helpful to obtain actualized cost functions for high-

pressure pumps and turbines that capture the nonlinear behavior of costs, for example, a power 

law for cost, with other exponents might change the results. 

 

A sensitivity analysis using different energy cost values will be interesting, the effect of 

the feed temperature also could be included in this analysis. 

 

Construction of metamodels for different commercial membrane modules, and the use of 

binary variables for the choice of one or another might help to obtain efficient reverse osmosis 

networks with lower TAC values. 

 

For the RO+PRO hybrid system, it will be interesting to validate the use of a fraction of 

permeate as low salinity feed solution since it will increase the osmotic potential. 

 

The use of the proposed optimization methodology could allow constructing 

technological roadmap of other hybrid technologies as forward osmosis, membrane distillation, 

or thermal technologies coupled with reverse osmosis. 

 

The proposed stochastic-deterministic methodology with the use of metamodels will be 

an interesting optimization tool to apply to other engineering problems.  
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APPENDIX 

 
Appendix 1. 

 

Reverse osmosis network general mathematical model  

 
The State Space version of a generalized superstructure with all the possible connections 

between units is shown in Figure A1. In this representation, the inputs of the distribution box 

are considered splitting nodes and all the outputs are considered mixing nodes. 

 

Distribution box: 

 
The distribution box is a network, describing the connection between the units and the 

feed and product streams, and consists of a series of splitting nodes (inputs) and mixing nodes 

(outputs), all the streams are characterized by a flow rate (F), a salt concentration (C) and a 

pressure (P), the superscripts HPP, T, RO, P, and B represents high-pressure pump, turbine, 

reverse osmosis stage, permeate and brine respectively, therefore B-HPP indicates the 

distribution from B to HPP, and so. The subscripts p, t and m are indexes that indicate the 

number of pumps, turbines and reverse osmosis stages respectively. The subscripts S, P and B 

means seawater, permeate and brine.  

In addition, each stream that is distributed from a unit to another has a binary decision 

variable associated with it, that will take the value of one (1) if the stream exists or zero (0) if 

not. For example, if a distribution from a (p) pump to a reverse osmosis stage (m) , 0HPP RO

p mF  

, the corresponding binary variable ,
HPP RO

p my   takes a value of one. 
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Figure A1. State Space Representation of the Superstructure of a reverse osmosis network. 
 

Mixing Models: 
 

Where mixing takes place one or more streams may be arriving at the node and are 

grouped into an output stream of the node, since in this type of node can occur mixture of 

different stream, the global mass balance is accompanied by the salt balance. 

Pumps Mixing: 

  

,
1

RO

s

N
F HPPHPP B HPP

p p m p

m

F F F
 



                                        A1.(1)

,
1

ˆ
RO

s

N
F HPPHPP HPP B HPP B

p p p S m p m

m

F C F C F C
 



                                A1.(2) 

Turbines Mixing: (No flow from pumps is considered): 

,
1

RON
T B T

t m t

m

F F 



                                                          A1.(3) 

,
1

RON
T T B T B

t t m t m

m

F C F C



                                                    A1.(4) 
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Reverse Osmosis units Inlet balances: 

* ,,
* 1 1

RO HPPN N
RO B RO HPP RO

m p mm m
m p

F F F 

 

                                           A1.(5) 

* * ,,
* 1 1

RO HPPN N
RO RO B RO B HPP RO HPP

m m p m pm m m
m p

F C F C F C 

 

                              A1.(6) 

Balances for the Outlet Permeate stream: 

1

ˆ
RO

PO

N
P F

PO m

m

F F




                                                A1.(7) 

1

ˆ
RO

PO

N
P F P

PO PO m m

m

F C F C




                                         A1.(8) 

Max

PO PC C                                                    A1.(9) 

Balances for the Outlet Brine stream: 

1

T

BO

N
T F

BO t

t

F F




                                               A1.(10) 

1

T

BO

N
T F T

BO BO t t

t

F C F C




                                        A1.(11) 

 

Additionally, to ensure that only the mixt of streams with pressures larger than or equal 

to the pressure of the destination unit: 

 

      only if      0HPP Fs HPP

p pPs Pn F                                             A1.(12) 

                   ,      only if      0P HPP P HPP

m p m pP Pn F                                              A1.(13)                   

* *,      only if      0HPP HPP HPP HPP

p p p pP Pn F                                           A1.(14) 

,      only if      0B HPP B HPP

m p m pP Pn F                                              A1.(15)                

,      only if      0B T B T

m t m tP Pn F                                                 A1.(16) 

*,      only if      0B RO B RO

m m m mP Pn F                                                A1.(17) 

                ,      only if      0HPP RO HPP RO

p m p mP Pn F                                             A1.(18) 

                      only if      >0 PP FP PPO

m mP P F
                                               A1.(19)                   

           only if       0BT FT B

t tP P F
                                              A1.(20) 

These conditions can be rewritten in a form amenable to a MINLP model as follows:   
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0   Fs HPP Fs HPP Fs HPP

p p FF y                                                A1.(21) 

(1 )      HPP Fs HPP Fs HPP

p p PPs Pn y                                             A1.(22) 

where  Fs HPP

F

 and   Fs HPP

P

 are larger than the maximum flow expected, and maximum 

pressure expected/allowed.  Indeed, when 0Fs HPP

pF   , then  Fs HPP

py  is forced to be one for 

A1.(21) to hold. Then, if 1Fs HPP

py   , equation A1.(22) reduces to HPP

pPs Pn . Otherwise, when 

0Fs HPP

pF   , then can take any value, including 0Fs HPP

py   , which is compatible with 

HPP

pPs Pn , if that is necessary. 

The rest of the equations for node to node connections are the following:  

, , 0P HPP P HPP P HPP

m p m p FF y                                                        A1.(23) 

 ,1P HPP P HPP P HPP

m p m p PP Pn y                                                      A1.(24) 

, , 0B HPP B HPP B HPP

m p m p FF y                                                        A1.(25) 

,(1 )B HPP B HPP B HPP

m p m p PP Pn y                                                     A1.(26) 

, , 0B T B T B T

m t m t FF y                                                              A1.(27) 

 ,1B T B T B T

m t m t PP Pn y                                                         A1.(28) 

*, *, 0B RO B RO B RO

m m m m FF y                                                         A1.(29) 

* *,(1 )B RO B RO B RO

m m m m PP Pn y                                                     A1.(30) 

, , 0HPP RO HPP RO HPP RO

p m p m FF y                                                   A1.(31) 

,(1 )HPP RO HPP RO HPP RO

p m p m PP Pn y                                                A1.(32) 

0P P PP F P F P F

m m FF y
                                                           A1.(33) 

(1 )P PP F P FP

m P m PP P y
                                                      A1.(34) 

0B B BT F T F T F

t t FF y
                                                         A1.(35) 

(1 )B BT F T FT

t B t PP P y
                                                     A1.(36) 

 

 

 

 

 

 Fs HPP

py 
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Splitting: 

 
In splitting nodes an inlet stream can be divided into multiple output streams since in 

this type of node only streams division takes place, the concentration and pressure of the output 

streams are equal to the concentration and pressure of the incoming stream. 

,
1

HPP
F HPPs

N

S s p

p

F F




                                                    A1.(37) 

The inlet stream SF  is usually available at atmospheric pressure so it cannot be used in 

turbines or in reverse osmosis units. Therefore, those streams have not been added. In addition, 

there is a connection to the Permeate because there is the possibility that the final permeate 

concentration reaches values lower than the maximum concentration allowed so this way the 

final permeate flow could be completed.   Finally, a feed to brine connection was not added as 

it would always be uneconomical.   

*, , ,
1 1 * 1

ROHPP T NN N
B B HPP B T B RO R

m m p m t mm m
p t m

F F F F F  

  

                                       A1.(38) 

PP FP

m mF F
                                                        A1.(39) 

BT FT

t tF F
                                                        A1.(40) 

,
HPP HPP RO

p p mF F                                                     A1.(41) 
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Appendix 2. 

 

To deal with the presence of bi-linearities and construct a linear lower bound model a 

reformulation is necessary.  

For example, equation (2) could be rewritten as follows: 

,
1

ˆ
RO

s

N
F HPPHPP B HPP

p p S m p

m

Z F C Z
 



                                         A2.(1) 

Where the product of the two variables was substituted by: 

HPP HPP HPP

p p pZ F C                                                      A2.(2) 

, ,
B HPP B HPP B

m p m p mZ F C                                                       A2.(3) 

Now it is necessary to choose which one of the two variables is going to be discretized in D-1 

intervals, in this case, it was picked the concentration variables, so they became: 

. .
. . .

,

( )
( 1)    1.. 1     

1

HPP UP HPP L

p pHPP HPP L HPP L HPP HPP UP

p d p p p p

C C
DC C d d D C C C

D


       


 A2.(4) 

. .
. . .

,

( )
( 1)    1.. 1     

1

B UP B L
B B L B L B B UPm m
m d m m m m

C C
DC C d d D C C C

D


       


          A2.(5) 

Where the super index (L) and (UP) indicate the lower and upper bounds of the variable. 

Now the variable is substituted by its discrete bounds, thus allowing Z to be inside of one of the 

intervals, that is, between two successive discrete values. Binary variables (vd) are used to 

guaranty that only one interval is picked. 

 

1

, 1 ,
1

D
HPP HPP HPP

p p d p d

d

Z DC w





                                                      A2.(6) 

1

, , 1 , ,
1

D
B HPP B B HPP

m p m d m p d

d

Z DC w


 




                                                  A2.(7) 

And: 

1

, ,
1

D
HPP HPP HPP

p p d p d

d

Z DC w




                                                      A2.(8) 

1

, ,
1

D
B HPP B B HPP

m p m d d

d

Z DC w


 



                                                   A2.(9) 
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The discretized variables need to satisfy: 

1

, 1 ,
1

D
HPP HPP HPP

p p d p d

d

C DC v





                                                       A2.(10) 

1

, ,
1

D
HPP HPP HPP

p p d p d

d

C DC v




                                                       A2.(11) 

1

, 1 ,
1

D
B B B

m m d m d

d

C DC v





                                                       A2.(12) 

1

, ,
1

D
B B B

m m d m d

d

C DC v




                                                         A2.(13) 

And Finally to guaranty that only one interval is picked:  

1

,
1

1
D

HPP

p d

d

v




                                                             A2.(14) 

1

,
1

1
D

B

m d

d

v




                                                             A2.(15) 

Now the wd expressions are defined as follows (those are to linearize the product of a 

continuous and a binary variable: 

.
, , 0HPP HPP UP HPP

p d p p dw F v                                                   A2.(16) 

.
, ,( ) (1 )HPP HPP HPP UP HPP

p p d p p dF w F v                                           A2.(17) 

, 0HPP HPP

p p dF w                                                          A2.(18) 

.
, , , , 0B HPP B HPP UP B

m p d m p m dw F v                                            A2.(19) 

.
, , , , ,( ) (1 ) 0B HPP B HPP B HPP UP B

m p m p d m p m dF w F v                                 A2.(20) 

, , , 0B HPP B HPP

m p m p dF w                                                    A2.(21) 

The same procedure is applied to each one of the bi-linear terms. 
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Appendix 3. 

After an algebraic manipulation of equations 65 – 88, the following expressions are obtained: 

, , , , , ,
ˆˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ1 2 3 4 5 * 1000 6 *1000Pe

m e m e m e m e m e mem P m e PW W P W a TW a TW S a TW          A3.(1) 

 , , , ,
ˆ ˆ ˆ ˆ7 8 9 1000 10 (1000 )m e m e m e mem P m e PW b W W S W                             A3.(2) 

   Where W1m,e to W10m,e are functions to be discretized according to the next equations:  

ˆ
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 
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      A3.(3) 

Where the product of binary variables is substituted by the following variable and its 

corresponding set of equations: 

ˆ

ˆ ˆ ˆ ˆ, ,
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Thus, the permeate flow and concentration are obtained from the next equations: 
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The partitioned variables that appears in equations 113-135 are discretized according to: 
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With their corresponding binary variables to ensure that only one interval is picked: 
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